# -*- coding: utf-8 -*-
"""This module implements rudimentary artificial neural network tools required for some
models implemented in the *HydPy* framework.
The relevant models apply some of the neural network features during simulation runs,
which is why we implement these features in the Cython extension module |annutils|.
"""
# import...
# ...from standard library
import weakref
from typing import *
# ...from site-packages
import numpy
# ...from HydPy
from hydpy.core import objecttools
from hydpy.core import propertytools
from hydpy.core.typingtools import *
from hydpy.auxs import interptools
if TYPE_CHECKING:
from hydpy.cythons import annutils
else:
from hydpy.cythons.autogen import annutils
class _ANNArrayProperty(
propertytools.DependentProperty[propertytools.TypeInput, propertytools.TypeOutput]
):
_obj2cann: Dict[Any, annutils.ANN] # pylint: disable=used-before-assignment
_obj2cann = weakref.WeakKeyDictionary()
def __init__(
self,
protected: propertytools.ProtectedProperties,
doc: str,
) -> None:
super().__init__(
protected=protected, fget=self._fget, fset=self._fset, fdel=self._fdel
)
self.set_doc(doc)
@classmethod
def add_cann(cls, obj: Any, cann: annutils.ANN) -> None:
"""Log the given Cython based ANN for the given object."""
cls._obj2cann[obj] = cann
@property
def _shape(self) -> str:
return f"shape_{self.name}"
def _fget(self, obj: "ANN") -> propertytools.TypeOutput:
cann = self._obj2cann[obj]
return numpy.asarray(getattr(cann, self.name))
def _fset(self, obj: "ANN", value: Optional[propertytools.TypeInput]) -> None:
if value is None:
self.fdel(obj)
else:
try:
cann = self._obj2cann[obj]
shape = getattr(obj, self._shape)
if self.name == "activation":
array = numpy.full(shape, value, dtype=int)
else:
array = numpy.full(shape, value, dtype=float)
setattr(cann, self.name, array)
except BaseException:
descr = " ".join(reversed(self.name.split("_")))
objecttools.augment_excmessage(
f"While trying to set the {descr} of the artificial neural "
f"network {objecttools.elementphrase(obj)}"
)
def _fdel(self, obj: "ANN") -> None:
cann = self._obj2cann[obj]
if self.name == "activation":
array = numpy.ones(getattr(obj, self._shape), dtype=int)
else:
array = numpy.zeros(getattr(obj, self._shape), dtype=float)
setattr(cann, self.name, array)
[docs]
class ANN(interptools.InterpAlgorithm):
"""Multi-layer feed-forward artificial neural network.
By default, class |ANN| uses the logistic function
:math:`f(x) = \\frac{1}{1+exp(-x)}` to calculate the activation of the hidden
layer's neurons. Alternatively, one can select the identity function
:math:`f(x) = x` or a variant of the logistic function for filtering specific
inputs. See property |ANN.activation| for more information on how to do this.
You can select |ANN| as the interpolation algorithm used by |SimpleInterpolator| or
one of the interpolation algorithms used by |SeasonalInterpolator|. Its original
purpose was to define arbitrary continuous relationships between the water stored
in a dam and the associated water stage (see model |dam_v001|). However, class
|ANN| can also be applied directly for testing purposes, as shown in the following
examples.
First, define the most simple artificial neural network consisting of only one
input node, one hidden neuron, and one output node, and pass arbitrary values for
the weights and intercepts:
>>> from hydpy import ANN, nan
>>> ann = ANN(nmb_inputs=1, nmb_neurons=(1,), nmb_outputs=1,
... weights_input=4.0, weights_output=3.0,
... intercepts_hidden=-16.0, intercepts_output=-1.0)
The following loop subsequently sets the values 0 to 8 as input values, performs
the calculation, and prints out the final output. As to be expected, the results
show the shape of the logistic function:
>>> from hydpy import round_
>>> for input_ in range(9):
... ann.inputs[0] = input_
... ann.calculate_values()
... round_([input_, ann.outputs[0]])
0, -1.0
1, -0.999982
2, -0.998994
3, -0.946041
4, 0.5
5, 1.946041
6, 1.998994
7, 1.999982
8, 2.0
One can also directly plot the resulting graph:
>>> figure = ann.plot(0.0, 8.0)
You can use the `pyplot` API of `matplotlib` to modify the figure or to save it to
disk (or print it to the screen, in case the interactive mode of `matplotlib` is
disabled):
>>> from hydpy.core.testtools import save_autofig
>>> save_autofig("ANN_plot.png", figure=figure)
.. image:: ANN_plot.png
Some models might require the derivative of certain outputs with respect to
individual inputs. One example is application model the |dam_v006|, which uses
class |ANN| to model the relationship between water storage and stage of a lake.
During a simulation run , it additionally needs to know the area of the water
surface, which is the derivative of storage with respect to stage. For such
purposes, class |ANN| provides method |ANN.calculate_derivatives|. In the
following example, we apply this method and compare its results with finite
difference approximations:
>>> d_input = 1e-8
>>> for input_ in range(9):
... ann.inputs[0] = input_-d_input/2.0
... ann.calculate_values()
... value0 = ann.outputs[0]
... ann.inputs[0] = input_+d_input/2.0
... ann.calculate_values()
... value1 = ann.outputs[0]
... derivative = (value1-value0)/d_input
... ann.inputs[0] = input_
... ann.calculate_values()
... ann.calculate_derivatives(0)
... round_([input_, derivative, ann.output_derivatives[0]])
0, 0.000001, 0.000001
1, 0.000074, 0.000074
2, 0.004023, 0.004023
3, 0.211952, 0.211952
4, 3.0, 3.0
5, 0.211952, 0.211952
6, 0.004023, 0.004023
7, 0.000074, 0.000074
8, 0.000001, 0.000001
Note the following two potential pitfalls (both due to speeding up method
|ANN.calculate_derivatives|). First, for networks with more than one hidden layer,
you must call |ANN.calculate_values| before calling |ANN.calculate_derivatives|.
Second, method |ANN.calculate_derivatives| calculates the derivatives with respect
to a single input only, selected by the `idx_input` argument. However, it works
fine to call method |ANN.calculate_values| and then |ANN.calculate_derivatives|
multiple times afterwards. Thereby, you can subsequently pass different index
values to calculate the derivatives with respect to different inputs.
The following example shows that everything works well for more complex single
layer networks (we checked the results manually):
>>> ann.nmb_inputs = 3
>>> ann.nmb_neurons = (4,)
>>> ann.nmb_outputs = 2
>>> ann.weights_input = [[ 0.2, -0.1, -1.7, 0.6],
... [ 0.9, 0.2, 0.8, 0.0],
... [-0.5, -1.0, 2.3, -0.4]]
>>> ann.weights_output = [[ 0.0, 2.0],
... [-0.5, 1.0],
... [ 0.4, 2.4],
... [ 0.8, -0.9]]
>>> ann.intercepts_hidden = [ 0.9, 0.0, -0.4, -0.2]
>>> ann.intercepts_output = [ 1.3, -2.0]
>>> ann.inputs = [-0.1, 1.3, 1.6]
>>> ann.calculate_values()
>>> round_(ann.outputs)
1.822222, 1.876983
We again validate the calculated derivatives by comparison with numerical
approximations:
>>> for idx_input in range(3):
... ann.calculate_derivatives(idx_input)
... round_(ann.output_derivatives)
0.099449, -0.103039
-0.01303, 0.365739
0.027041, -0.203965
>>> d_input = 1e-8
>>> for idx_input in range(3):
... input_ = ann.inputs[idx_input]
... ann.inputs[idx_input] = input_-d_input/2.0
... ann.calculate_values()
... values0 = ann.outputs.copy()
... ann.inputs[idx_input] = input_+d_input/2.0
... ann.calculate_values()
... values1 = ann.outputs.copy()
... ann.inputs[idx_input] = input_
... round_((values1-values0)/d_input)
0.099449, -0.103039
-0.01303, 0.365739
0.027041, -0.203965
The next example shows how to solve the XOR problem with a two-layer network. As
usual, `1` stands for `True` and `0` stands for `False`.
We define a network with two inputs (`I1` and `I2`), two neurons in mthe first
hidden layer (`H11` and `H12`), one neuron in the second hidden layer (`H2`), and a
single output (`O1`):
>>> ann.nmb_inputs = 2
>>> ann.nmb_neurons = (2, 1)
>>> ann.nmb_outputs = 1
The value of `O1` shall be identical with the activation of `H2`:
>>> ann.weights_output = 1.0
>>> ann.intercepts_output = 0.0
We set all intercepts of the hidden layer's neurons to 750 and initialise
unnecessary matrix entries with "nan". So, an input of 500 or 1000 results in an
activation state of approximately zero or one, respectively:
>>> ann.intercepts_hidden = [[-750.0, -750.0],
... [-750.0, nan]]
The weighting factor between both inputs and `H11` is 1000. Hence, one `True`
input is sufficient to activate `H1`. In contrast, the weighting factor between
both inputs and `H12` is 500. Hence, two `True` inputs are required to activate
`H12`:
>>> ann.weights_input= [[1000.0, 500.0],
... [1000.0, 500.0]]
The weighting factor between `H11` and `H2` is 1000. Hence, in principle, `H11`
can activate `H2`. However, the weighting factor between `H12` and `H2` is -1000.
Hence, `H12` prevents `H2` from becoming activated even when `H11` is activated:
>>> ann.weights_hidden= [[[1000.0],
... [-1000.0]]]
To recapitulate, `H11` determines if at least one input is `True`, `H12` determines
if both inputs are `True`, and `H2` determines if precisely one input is `True`,
which is the solution for the XOR-problem:
>>> ann
ANN(
nmb_inputs=2,
nmb_neurons=(2, 1),
weights_input=[[1000.0, 500.0],
[1000.0, 500.0]],
weights_hidden=[[[1000.0],
[-1000.0]]],
weights_output=[[1.0]],
intercepts_hidden=[[-750.0, -750.0],
[-750.0, nan]],
intercepts_output=[0.0],
)
The following calculation confirms the proper configuration of our network:
>>> for inputs in ((0.0, 0.0),
... (1.0, 0.0),
... (0.0, 1.0),
... (1.0, 1.0)):
... ann.inputs = inputs
... ann.calculate_values()
... round_([inputs[0], inputs[1], ann.outputs[0]])
0.0, 0.0, 0.0
1.0, 0.0, 1.0
0.0, 1.0, 1.0
1.0, 1.0, 0.0
To elaborate on the last calculation, we show the corresponding activations of the
hidden neurons. As both inputs are `True`, both `H12` (upper left value) and `H22`
(upper right value) are activated, but `H2` (lower left value) is not:
>>> ann.neurons
array([[1., 1.],
[0., 0.]])
Due to the sharp response function, the derivatives with respect to both inputs are
approximately zero:
>>> for inputs in ((0.0, 0.0),
... (1.0, 0.0),
... (0.0, 1.0),
... (1.0, 1.0)):
... ann.inputs = inputs
... ann.calculate_values()
... ann.calculate_derivatives(0)
... round_([inputs[0], inputs[1], ann.output_derivatives[0]])
0.0, 0.0, 0.0
1.0, 0.0, 0.0
0.0, 1.0, 0.0
1.0, 1.0, 0.0
To better validate the calculation of derivatives for multi-layer networks, we
decrease our network's weights (and, accordingly, the intercepts), making its
response more smooth:
>>> ann = ANN(nmb_inputs=2,
... nmb_neurons=(2, 1),
... nmb_outputs=1,
... weights_input=[[10.0, 5.0],
... [10.0, 5.0]],
... weights_hidden=[[[10.0],
... [-10.0]]],
... weights_output=[[1.0]],
... intercepts_hidden=[[-7.5, -7.5],
... [-7.5, nan]],
... intercepts_output=[0.0])
The results of method |ANN.calculate_derivatives| again agree with those of the
finite difference approximation:
>>> for inputs in ((0.0, 0.0),
... (1.0, 0.0),
... (0.0, 1.0),
... (1.0, 1.0)):
... ann.inputs = inputs
... ann.calculate_values()
... ann.calculate_derivatives(0)
... derivative1 = ann.output_derivatives[0]
... ann.calculate_derivatives(1)
... derivative2 = ann.output_derivatives[0]
... round_([inputs[0], inputs[1], derivative1, derivative2])
0.0, 0.0, 0.000015, 0.000015
1.0, 0.0, 0.694609, 0.694609
0.0, 1.0, 0.694609, 0.694609
1.0, 1.0, -0.004129, -0.004129
>>> d_input = 1e-8
>>> for inputs in ((0.0, 0.0),
... (1.0, 0.0),
... (0.0, 1.0),
... (1.0, 1.0)):
... derivatives = []
... for idx_input in range(2):
... ann.inputs = inputs
... ann.inputs[idx_input] = inputs[idx_input]-d_input/2.0
... ann.calculate_values()
... value0 = ann.outputs[0]
... ann.inputs[idx_input] = inputs[idx_input]+d_input/2.0
... ann.calculate_values()
... value1 = ann.outputs[0]
... derivatives.append((value1-value0)/d_input)
... round_([inputs[0], inputs[1]] + derivatives)
0.0, 0.0, 0.000015, 0.000015
1.0, 0.0, 0.694609, 0.694609
0.0, 1.0, 0.694609, 0.694609
1.0, 1.0, -0.004129, -0.004129
Note that Python class |ANN| handles a corresponding Cython extension class defined
in |annutils|, which does not protect itself against segmentation faults. But class
|ANN| takes up this task, meaning using its public members should always result in
readable exceptions instead of program crashes, e.g.:
>>> corrupted = ANN()
>>> del corrupted.nmb_outputs
>>> corrupted.nmb_outputs
Traceback (most recent call last):
...
hydpy.core.exceptiontools.AttributeNotReady: Attribute `nmb_outputs` of object \
`ann` has not been prepared so far.
>>> corrupted.outputs
Traceback (most recent call last):
...
hydpy.core.exceptiontools.AttributeNotReady: Attribute `outputs` of object `ann` \
is not usable so far. At least, you have to prepare attribute `nmb_outputs` first.
You can compare |ANN| objects for equality. The following exhaustive tests ensure
that one |ANN| is only considered equal with another |ANN| object with the same
network shape and parameter values:
>>> ann == ann
True
>>> ann == 1
False
>>> ann2 = ANN()
>>> ann2(nmb_inputs=2,
... nmb_neurons=(2, 1),
... nmb_outputs=1,
... weights_input=[[10.0, 5.0],
... [10.0, 5.0]],
... weights_hidden=[[[10.0],
... [-10.0]]],
... weights_output=[[1.0]],
... intercepts_hidden=[[-7.5, -7.5],
... [-7.5, nan]],
... intercepts_output=[0.0])
>>> ann == ann2
True
>>> ann2.weights_input[0, 0] = nan
>>> ann == ann2
False
>>> ann2.weights_input[0, 0] = 10.0
>>> ann == ann2
True
>>> ann2.weights_hidden[0, 1, 0] = 5.0
>>> ann == ann2
False
>>> ann2.weights_hidden[0, 1, 0] = -10.0
>>> ann == ann2
True
>>> ann2.weights_output[0, 0] = 2.0
>>> ann == ann2
False
>>> ann2.weights_output[0, 0] = 1.0
>>> ann == ann2
True
>>> ann2.intercepts_hidden[1, 0] = nan
>>> ann == ann2
False
>>> ann2.intercepts_hidden[1, 0] = -7.5
>>> ann == ann2
True
>>> ann2.intercepts_output[0] = 0.1
>>> ann == ann2
False
>>> ann2.intercepts_output[0] = 0.0
>>> ann == ann2
True
>>> ann2.activation[0, 0] = 0
>>> ann == ann2
False
>>> ann2.activation[0, 0] = 1
>>> ann == ann2
True
>>> ann2(nmb_inputs=1,
... nmb_neurons=(2, 1),
... nmb_outputs=1)
>>> ann == ann2
False
>>> ann2(nmb_inputs=2,
... nmb_neurons=(1, 1),
... nmb_outputs=1)
>>> ann == ann2
False
>>> ann2(nmb_inputs=2,
... nmb_neurons=(2, 1),
... nmb_outputs=2)
>>> ann == ann2
False
"""
_calgorithm: annutils.ANN
__max_nmb_neurons: int
def __init__(
self,
*,
nmb_inputs: int = 1,
nmb_neurons: Tuple[int, ...] = (1,),
nmb_outputs: int = 1,
weights_input: Optional[MatrixInput[float]] = None,
weights_output: Optional[MatrixInput[float]] = None,
weights_hidden=None,
intercepts_hidden: Optional[MatrixInput[float]] = None,
intercepts_output: Optional[VectorInput[float]] = None,
activation: Optional[MatrixInput[int]] = None,
):
self._calgorithm = annutils.ANN()
_ANNArrayProperty.add_cann(self, self._calgorithm)
self(
nmb_inputs=nmb_inputs,
nmb_neurons=nmb_neurons,
nmb_outputs=nmb_outputs,
weights_input=weights_input,
weights_output=weights_output,
weights_hidden=weights_hidden,
intercepts_hidden=intercepts_hidden,
intercepts_output=intercepts_output,
activation=activation,
)
def __call__(
self,
*,
nmb_inputs: int = 1,
nmb_neurons: Tuple[int, ...] = (1,),
nmb_outputs: int = 1,
weights_input: Optional[MatrixInput[float]] = None,
weights_output: Optional[MatrixInput[float]] = None,
weights_hidden=None,
intercepts_hidden: Optional[MatrixInput[float]] = None,
intercepts_output: Optional[VectorInput[float]] = None,
activation: Optional[MatrixInput[int]] = None,
) -> None:
self.nmb_inputs = nmb_inputs # type: ignore[has-type]
self.nmb_outputs = nmb_outputs # type: ignore[has-type]
self.nmb_neurons = nmb_neurons
self.weights_input = weights_input
self.weights_hidden = weights_hidden
self.weights_output = weights_output
self.intercepts_hidden = intercepts_hidden
self.intercepts_output = intercepts_output
self.activation = activation
del self.inputs # type: ignore[has-type]
del self.outputs # type: ignore[has-type]
del self.output_derivatives # type: ignore[has-type]
del self.neurons
del self.neuron_derivatives
def __update_shapes(self) -> None:
if self.__protectedproperties.allready(self):
del self.weights_input
del self.weights_hidden
del self.weights_output
del self.intercepts_hidden
del self.intercepts_output
del self.activation
del self.inputs # type: ignore[has-type]
del self.outputs # type: ignore[has-type]
del self.output_derivatives # type: ignore[has-type]
del self.neurons
del self.neuron_derivatives
def _get_nmb_inputs(self) -> int:
"""The number of input nodes.
>>> from hydpy import ANN
>>> ann = ANN(nmb_inputs=2, nmb_neurons=(2, 1), nmb_outputs=3)
>>> ann.nmb_inputs
2
>>> ann.nmb_inputs = 3
>>> ann.nmb_inputs
3
"""
return self._calgorithm.nmb_inputs
def _set_nmb_inputs(self, value: int) -> None:
self._calgorithm.nmb_inputs = int(value)
self.__update_shapes()
def _del_nmb_inputs(self) -> None:
pass
nmb_inputs = propertytools.ProtectedProperty[int, int]( # type: ignore[assignment]
fget=_get_nmb_inputs,
fset=_set_nmb_inputs,
fdel=_del_nmb_inputs,
)
nmb_inputs: int # type: ignore[no-redef]
# to improve PyCharm code completion; required until PyCharm is fixed
def _get_nmb_outputs(self) -> int:
"""The number of output nodes.
>>> from hydpy import ANN
>>> ann = ANN(nmb_inputs=2, nmb_neurons=(2, 1), nmb_outputs=3)
>>> ann.nmb_outputs
3
>>> ann.nmb_outputs = 2
>>> ann.nmb_outputs
2
>>> del ann.nmb_outputs
>>> ann.nmb_outputs
Traceback (most recent call last):
...
hydpy.core.exceptiontools.AttributeNotReady: Attribute `nmb_outputs` of \
object `ann` has not been prepared so far.
"""
return self._calgorithm.nmb_outputs
def _set_nmb_outputs(self, value: int) -> None:
self._calgorithm.nmb_outputs = int(value)
self.__update_shapes()
def _del_nmb_outputs(self) -> None:
pass
nmb_outputs = propertytools.ProtectedProperty[int, int]( # type: ignore[assignment]
fget=_get_nmb_outputs,
fset=_set_nmb_outputs,
fdel=_del_nmb_outputs,
)
nmb_outputs: int # type: ignore[no-redef]
# to improve PyCharm code completion; required until PyCharm is fixed
def _get_nmb_neurons(self) -> Tuple[int, ...]:
"""The number of neurons of the hidden layers.
>>> from hydpy import ANN
>>> ann = ANN(nmb_inputs=2, nmb_neurons=(2, 1), nmb_outputs=3)
>>> ann.nmb_neurons
(2, 1)
>>> ann.nmb_neurons = (3,)
>>> ann.nmb_neurons
(3,)
>>> del ann.nmb_neurons
>>> ann.nmb_neurons
Traceback (most recent call last):
...
hydpy.core.exceptiontools.AttributeNotReady: Attribute `nmb_neurons` of \
object `ann` has not been prepared so far.
"""
return tuple(numpy.asarray(self._calgorithm.nmb_neurons))
def _set_nmb_neurons(self, value: Tuple[int, ...]) -> None:
self._calgorithm.nmb_neurons = numpy.array(value, dtype=int, ndmin=1)
self._calgorithm.nmb_layers = len(value)
self.__max_nmb_neurons = max(value)
self.__update_shapes()
def _del_nmb_neurons(self) -> None:
pass
nmb_neurons = propertytools.ProtectedProperty[Tuple[int, ...], Tuple[int, ...]](
fget=_get_nmb_neurons,
fset=_set_nmb_neurons,
fdel=_del_nmb_neurons,
)
nmb_neurons: Tuple[int, ...] # type: ignore[no-redef]
# to improve PyCharm code completion; required until PyCharm is fixed
__protectedproperties = propertytools.ProtectedProperties(
nmb_inputs, nmb_outputs, nmb_neurons # type: ignore[has-type]
)
@property
def nmb_weights_input(self) -> int:
"""The number of input weights.
>>> from hydpy import ANN
>>> ann = ANN(nmb_inputs=3, nmb_neurons=(2, 1), nmb_outputs=1)
>>> ann.nmb_weights_input
6
"""
return self.nmb_neurons[0] * self.nmb_inputs # type: ignore[has-type, no-any-return] # pylint: disable=line-too-long
@property
def shape_weights_input(self) -> Tuple[int, int]:
"""The shape of the array containing the input weights.
The first integer value is the number of input nodes; the second integer value
is the number of neurons of the first hidden layer:
>>> from hydpy import ANN
>>> ann = ANN(nmb_inputs=3, nmb_neurons=(2, 1), nmb_outputs=1)
>>> ann.shape_weights_input
(3, 2)
"""
return self.nmb_inputs, self.nmb_neurons[0] # type: ignore[has-type]
weights_input = _ANNArrayProperty[Optional[MatrixInput[float]], Matrix[float]](
protected=__protectedproperties,
doc="""The weights between all input nodes and neurons of the first hidden
layer.
All "weight properties" of class |ANN| are usable as explained in-depth for the
input weights below.
The input nodes and the neurons vary on the first and second axes of the
2-dimensional array, respectively (see property |ANN.shape_weights_input|):
>>> from hydpy import ANN
>>> ann = ANN(nmb_inputs=2, nmb_neurons=(3,))
>>> ann.weights_input
array([[0., 0., 0.],
[0., 0., 0.]])
The following error occurs when either the number of input nodes or of hidden
neurons is unknown:
>>> del ann.nmb_inputs
>>> ann.weights_input
Traceback (most recent call last):
...
hydpy.core.exceptiontools.AttributeNotReady: Attribute \
`weights_input` of object `ann` is not usable so far. At least, \
you have to prepare attribute `nmb_inputs` first.
>>> ann.nmb_inputs = 2
It is allowed to set values via slicing:
>>> ann.weights_input[:, 0] = 1.
>>> ann.weights_input
array([[1., 0., 0.],
[1., 0., 0.]])
If possible, property |ANN.weights_input| performs type conversions:
>>> ann.weights_input = "2"
>>> ann.weights_input
array([[2., 2., 2.],
[2., 2., 2.]])
One can assign whole matrices directly:
>>> import numpy
>>> ann.weights_input = numpy.eye(2, 3)
>>> ann.weights_input
array([[1., 0., 0.],
[0., 1., 0.]])
One can also delete the values contained in the array:
>>> del ann.weights_input
>>> ann.weights_input
array([[0., 0., 0.],
[0., 0., 0.]])
Errors like wrong shapes (or unconvertible inputs) result in error messages:
>>> ann.weights_input = numpy.eye(3)
Traceback (most recent call last):
...
ValueError: While trying to set the input weights of the artificial \
neural network `ann` of element `?`, the following error occurred: could not \
broadcast input array from shape (3,3) into shape (2,3)
""",
)
@property
def shape_weights_output(self) -> Tuple[int, int]:
"""The shape of the array containing the output weights.
The first integer value is the number of neurons of the first hidden layer; the
second integer value is the number of output nodes:
>>> from hydpy import ANN
>>> ann = ANN(nmb_inputs=2, nmb_neurons=(2, 1), nmb_outputs=3)
>>> ann.shape_weights_output
(1, 3)
"""
return self.nmb_neurons[-1], self.nmb_outputs # type: ignore[has-type]
@property
def nmb_weights_output(self) -> int:
"""The number of output weights.
>>> from hydpy import ANN
>>> ann = ANN(nmb_inputs=2, nmb_neurons=(2, 4), nmb_outputs=3)
>>> ann.nmb_weights_output
12
"""
return self.nmb_neurons[-1] * self.nmb_outputs # type: ignore[has-type, no-any-return] # pylint: disable=line-too-long
weights_output = _ANNArrayProperty[Optional[MatrixInput[float]], Matrix[float]](
protected=__protectedproperties,
doc="""The weights between all neurons of the last hidden layer and the output
nodes.
See the documentation on properties |ANN.shape_weights_output| and
|ANN.weights_input| for further information.
""",
)
@property
def shape_weights_hidden(self) -> Tuple[int, int, int]:
"""The shape of the array containing the activation of the hidden neurons.
The first integer value is the number of connections between the hidden layers.
The second integer value is the maximum number of neurons of all hidden layers
feeding information into another hidden layer (all except the last one).
Finally, the third integer value is the maximum number of neurons of all hidden
layers receiving information from another hidden layer (all except the first
one):
>>> from hydpy import ANN
>>> ann = ANN(nmb_inputs=6, nmb_neurons=(4, 3, 2), nmb_outputs=6)
>>> ann.shape_weights_hidden
(2, 4, 3)
>>> ann(nmb_inputs=6, nmb_neurons=(4,), nmb_outputs=6)
>>> ann.shape_weights_hidden
(0, 0, 0)
"""
if self.nmb_layers > 1:
nmb_neurons = self.nmb_neurons
return self.nmb_layers - 1, max(nmb_neurons[:-1]), max(nmb_neurons[1:])
return 0, 0, 0
@property
def nmb_weights_hidden(self) -> int:
"""The number of hidden weights.
>>> from hydpy import ANN
>>> ann = ANN(nmb_inputs=2, nmb_neurons=(4, 3, 2), nmb_outputs=3)
>>> ann.nmb_weights_hidden
18
"""
nmb = 0
for idx_layer in range(self.nmb_layers - 1):
nmb += self.nmb_neurons[idx_layer] * self.nmb_neurons[idx_layer + 1]
return nmb
weights_hidden = _ANNArrayProperty(
protected=__protectedproperties,
doc="""The weights between the neurons of the different hidden layers.
See the documentation on properties |ANN.shape_weights_hidden| and
|ANN.weights_input| for further information.
""",
)
@property
def shape_intercepts_hidden(self) -> Tuple[int, int]:
"""The shape of the array containing the intercepts of neurons of the hidden
layers.
The first integer value is the number of hidden layers; the second integer
value is the maximum number of neurons of all hidden layers:
>>> from hydpy import ANN
>>> ann = ANN(nmb_inputs=6, nmb_neurons=(4, 3, 2), nmb_outputs=6)
>>> ann.shape_intercepts_hidden
(3, 4)
"""
return self.nmb_layers, self.__max_nmb_neurons
@property
def nmb_intercepts_hidden(self) -> int:
"""The number of input intercepts."""
return sum(self.nmb_neurons)
intercepts_hidden = _ANNArrayProperty[Optional[MatrixInput[float]], Matrix[float]](
protected=__protectedproperties,
doc="""The intercepts of all neurons of the hidden layers.
See the documentation on properties |ANN.shape_intercepts_hidden| and
|ANN.weights_input| for further information.
""",
)
@property
def shape_intercepts_output(self) -> Tuple[int]:
"""The shape of the array containing the intercepts of neurons of the hidden
layers.
The only integer value is the number of output nodes:
>>> from hydpy import ANN
>>> ann = ANN(nmb_inputs=2, nmb_neurons=(2, 1), nmb_outputs=3)
>>> ann.shape_intercepts_output
(3,)
"""
return (self.nmb_outputs,) # type: ignore[has-type]
@property
def nmb_intercepts_output(self) -> int:
"""The number of output intercepts.
>>> from hydpy import ANN
>>> ann = ANN(nmb_inputs=2, nmb_neurons=(2, 1), nmb_outputs=3)
>>> ann.nmb_intercepts_output
3
"""
return self.nmb_outputs # type: ignore[has-type]
intercepts_output = _ANNArrayProperty[Optional[VectorInput[float]], Vector[float]](
protected=__protectedproperties,
doc="""The intercepts of all output nodes.
See the documentation on properties |ANN.shape_intercepts_output| and
|ANN.weights_input| for further information.
""",
)
@property
def shape_activation(self) -> Tuple[int, int]:
"""The shape of the array defining the activation function for each neuron of
the hidden layers.
The first integer value is the number of hidden layers; the second integer
value is the maximum number of neurons of all hidden layers:
>>> from hydpy import ANN
>>> ann = ANN(nmb_inputs=6, nmb_neurons=(4, 3, 2), nmb_outputs=6)
>>> ann.shape_activation
(3, 4)
"""
return self.nmb_layers, self.__max_nmb_neurons
activation = _ANNArrayProperty[Optional[MatrixInput[int]], Matrix[int]](
protected=__protectedproperties,
doc="""Indices for selecting suitable activation functions for the neurons of
the hidden layers.
By default, |ANN| uses the logistic function for calculating the activation of
the neurons of the hidden layers and uses the identity function for the output
nodes. However, property |ANN.activation| allows defining other activation
functions for the hidden neurons individually. So far, one can select the
identity function and a "filter version" of the logistic function as
alternatives -- others might follow.
Assume a neuron receives input :math:`i_1` and :math:`i_2` from two nodes of
the input layer or its upstream hidden layer. We wheight these input values as
usual:
:math:`x_1 = c + w_1 \\cdot i_1 + w_2 \\cdot i_2`
When selecting the identity function through setting the index value "0", the
activation of the considered neuron is:
:math:`a_1 = x_1`
Using the identity function is helpful for educational examples and for
bypassing input through one layer without introducing nonlinearity.
When selecting the logistic function through setting the index value "1", the
activation of the considered neuron is:
:math:`a_1 = 1-\\frac{1}{1+exp(x_1)}`
The logistic function is a standard function for constructing neural networks.
It allows to approximate any relationship within a specific range and accuracy,
provided the neural network is large enough.
When selecting the "filter version" of the logistic function through setting
the index value "2", the activation of the considered neuron is:
:math:`a_1 = 1-\\frac{1}{1+exp(x_1)} \\cdot i_1`
"Filter version" means that our neuron now filters the input of the single
input node placed at the corresponding position of its layer. This activation
function helps force the output of a neural network to be zero but never
negative beyond a certain threshold.
Like the main documentation on class |ANN|, we now define a relatively complex
network to show that the "normal" and the derivative calculations work. This
time, we set the activation function explicitly. "1" stands for the logistic
function, which we first use for all hidden neurons:
>>> from hydpy.auxs.anntools import ANN
>>> from hydpy import round_
>>> ann = ANN(nmb_inputs=2,
... nmb_neurons=(2, 2),
... nmb_outputs=2,
... weights_input=[[0.2, -0.1],
... [-1.7, 0.6]],
... weights_hidden=[[[-.5, 1.0],
... [0.4, 2.4]]],
... weights_output=[[0.8, -0.9],
... [0.5, -0.4]],
... intercepts_hidden=[[0.9, 0.0],
... [-0.4, -0.2]],
... intercepts_output=[1.3, -2.0],
... activation=[[1, 1],
... [1, 1]])
>>> ann.inputs = -0.1, 1.3
>>> ann.calculate_values()
>>> round_(ann.outputs)
2.074427, -2.734692
>>> for idx_input in range(2):
... ann.calculate_derivatives(idx_input)
... round_(ann.output_derivatives)
-0.006199, 0.006571
0.039804, -0.044169
In the next example, we want to apply the identity function for the second
neuron of the first hidden layer and the first neuron of the second hidden
layer. Therefore, we pass its index value "0" to the corresponding
|ANN.activation| entries:
>>> ann.activation = [[1, 0], [0, 1]]
>>> ann
ANN(
nmb_inputs=2,
nmb_neurons=(2, 2),
nmb_outputs=2,
weights_input=[[0.2, -0.1],
[-1.7, 0.6]],
weights_hidden=[[[-0.5, 1.0],
[0.4, 2.4]]],
weights_output=[[0.8, -0.9],
[0.5, -0.4]],
intercepts_hidden=[[0.9, 0.0],
[-0.4, -0.2]],
intercepts_output=[1.3, -2.0],
activation=[[1, 0],
[0, 1]],
)
The agreement between the analytical and the numerical derivatives gives us
confidence everything works fine:
>>> ann.calculate_values()
>>> round_(ann.outputs)
1.584373, -2.178468
>>> for idx_input in range(2):
... ann.calculate_derivatives(idx_input)
... round_(ann.output_derivatives)
-0.056898, 0.060219
0.369807, -0.394801
>>> d_input = 1e-8
>>> for idx_input in range(2):
... input_ = ann.inputs[idx_input]
... ann.inputs[idx_input] = input_-d_input/2.0
... ann.calculate_values()
... values0 = ann.outputs.copy()
... ann.inputs[idx_input] = input_+d_input/2.0
... ann.calculate_values()
... values1 = ann.outputs.copy()
... ann.inputs[idx_input] = input_
... round_((values1-values0)/d_input)
-0.056898, 0.060219
0.369807, -0.394801
Finally, we perform the same check for the "filter version" of the logistic
function:
>>> ann.activation = [[1, 2], [2, 1]]
>>> ann.calculate_values()
>>> round_(ann.outputs)
1.825606, -2.445682
>>> for idx_input in range(2):
... ann.calculate_derivatives(idx_input)
... round_(ann.output_derivatives)
0.009532, -0.011236
-0.001715, 0.02872
>>> d_input = 1e-8
>>> for idx_input in range(2):
... input_ = ann.inputs[idx_input]
... ann.inputs[idx_input] = input_-d_input/2.0
... ann.calculate_values()
... values0 = ann.outputs.copy()
... ann.inputs[idx_input] = input_+d_input/2.0
... ann.calculate_values()
... values1 = ann.outputs.copy()
... ann.inputs[idx_input] = input_
... round_((values1-values0)/d_input)
0.009532, -0.011236
-0.001715, 0.02872
""",
)
@property
def shape_inputs(self) -> Tuple[int]:
"""The shape of the array containing the input values.
The only integer value is the number of input nodes:
>>> from hydpy import ANN
>>> ann = ANN(nmb_inputs=5, nmb_neurons=(2, 1), nmb_outputs=2)
>>> ann.shape_inputs
(5,)
"""
return (self.nmb_inputs,) # type: ignore[has-type]
inputs = _ANNArrayProperty[Optional[VectorInput[float]], Vector[float]]( # type: ignore[assignment] # pylint: disable=line-too-long
protected=__protectedproperties,
doc="""The values of the input nodes.
See the documentation on properties |ANN.shape_inputs| and |ANN.weights_input|
for further information.
""",
)
@property
def shape_outputs(self) -> Tuple[int]:
"""The shape of the array containing the output values.
The only integer value is the number of output nodes:
>>> from hydpy import ANN
>>> ann = ANN(nmb_inputs=2, nmb_neurons=(2, 1), nmb_outputs=6)
>>> ann.shape_outputs
(6,)
"""
return (self.nmb_outputs,) # type: ignore[has-type]
outputs = _ANNArrayProperty[Optional[VectorInput[float]], Vector[float]]( # type: ignore[assignment] # pylint: disable=line-too-long
protected=__protectedproperties,
doc="""The values of the output nodes.
See the documentation on properties |ANN.shape_outputs| and |ANN.weights_input|
for further information.
""",
)
@property
def shape_output_derivatives(self) -> Tuple[int]:
"""The shape of the array containing the output derivatives.
The only integer value is the number of output nodes:
>>> from hydpy import ANN
>>> ann = ANN(nmb_inputs=2, nmb_neurons=(2, 1), nmb_outputs=6)
>>> ann.shape_output_derivatives
(6,)
"""
return (self.nmb_outputs,) # type: ignore[has-type]
output_derivatives = _ANNArrayProperty[Optional[Vector[float]], Vector[float]]( # type: ignore[assignment] # pylint: disable=line-too-long
protected=__protectedproperties,
doc="""The derivatives of the output nodes.
See the documentation on properties |ANN.shape_output_derivatives| and
|ANN.weights_input| for further information.
""",
)
def _get_nmb_layers(self) -> int:
"""The number of hidden layers.
>>> from hydpy import ANN
>>> ann = ANN(nmb_inputs=2, nmb_neurons=(2, 1), nmb_outputs=3)
>>> ann.nmb_layers
2
"""
return self._calgorithm.nmb_layers
nmb_layers = propertytools.DependentProperty[int, int](
protected=__protectedproperties,
fget=_get_nmb_layers,
)
def _get_shape_neurons(self) -> Tuple[int, int]:
"""The shape of the array containing the activations of the neurons of the
hidden layers.
The first integer value is the number of hidden layers; the second integer
value is the maximum number of neurons of all hidden layers:
>>> from hydpy import ANN
>>> ann = ANN(nmb_inputs=2, nmb_neurons=(4, 3, 2), nmb_outputs=6)
>>> ann.shape_neurons
(3, 4)
"""
return self.nmb_layers, self.__max_nmb_neurons
shape_neurons = propertytools.DependentProperty[Tuple[int, int], Tuple[int, int]](
protected=__protectedproperties,
fget=_get_shape_neurons,
)
neurons = _ANNArrayProperty[Optional[MatrixInput[float]], Matrix[float]](
protected=__protectedproperties,
doc="""The activation of the neurons of the hidden layers.
See the documentation on properties |ANN.shape_neurons| and |ANN.weights_input|
for further information.
""",
)
def _get_shape_neuron_derivatives(self) -> Tuple[int, int]:
"""The shape of the array containing the derivatives of the activities of the
neurons of the hidden layers.
The first integer value is the number of hidden layers; the second integer
value is the maximum number of neurons of all hidden layers:
>>> from hydpy import ANN
>>> ann = ANN(nmb_inputs=2, nmb_neurons=(4, 3, 2), nmb_outputs=6)
>>> ann.shape_neuron_derivatives
(3, 4)
"""
return self.nmb_layers, self.__max_nmb_neurons
shape_neuron_derivatives = propertytools.DependentProperty[
Tuple[int, int], Tuple[int, int]
](
protected=__protectedproperties,
fget=_get_shape_neuron_derivatives,
)
neuron_derivatives = _ANNArrayProperty[Optional[MatrixInput[float]], Matrix[float]](
protected=__protectedproperties,
doc="""The derivatives of the activation of the neurons of the hidden layers.
See the documentation on properties |ANN.shape_neuron_derivatives| and
|ANN.weights_input| for further information.
""",
)
[docs]
def calculate_values(self) -> None:
"""Calculate the network output values based on the input values defined
previously.
For more information, see the documentation on class |ANN|.
"""
self._calgorithm.calculate_values()
[docs]
def calculate_derivatives(self, idx: int) -> None:
"""Calculate the derivatives of the network output values with respect to the
input value of the given index.
For more information, see the documentation on class |ANN|.
"""
self._calgorithm.calculate_derivatives(idx)
@property
def nmb_weights(self) -> int:
"""The number of all input, inner, and output weights.
>>> from hydpy import ANN
>>> ann = ANN(nmb_inputs=1, nmb_neurons=(2, 3), nmb_outputs=4)
>>> ann.nmb_weights
20
"""
return (
self.nmb_weights_input + self.nmb_weights_hidden + self.nmb_weights_output
)
@property
def nmb_intercepts(self) -> int:
"""The number of all inner and output intercepts.
>>> from hydpy import ANN
>>> ann = ANN(nmb_inputs=1, nmb_neurons=(2, 3), nmb_outputs=4)
>>> ann.nmb_intercepts
9
"""
return self.nmb_intercepts_hidden + self.nmb_intercepts_output
@property
def nmb_parameters(self) -> int:
"""The sum of |ANN.nmb_weights| and |ANN.nmb_intercepts|.
>>> from hydpy import ANN
>>> ann = ANN(nmb_inputs=1, nmb_neurons=(2, 3), nmb_outputs=4)
>>> ann.nmb_parameters
29
"""
return self.nmb_weights + self.nmb_intercepts
[docs]
def verify(self) -> None:
"""Raise a |RuntimeError| if the network's shape is not defined completely.
>>> from hydpy import ANN
>>> ann = ANN()
>>> del ann.nmb_inputs
>>> ann.verify()
Traceback (most recent call last):
...
RuntimeError: The shape of the the artificial neural network parameter `ann` \
of element `?` is not properly defined.
"""
if not self.__protectedproperties.allready(self):
raise RuntimeError(
f"The shape of the the artificial neural network parameter "
f"{objecttools.elementphrase(self)} is not properly defined."
)
[docs]
def assignrepr(self, prefix: str, indent: int = 0) -> str:
"""Return a string representation of the actual |ANN| object prefixed with the
given string."""
l1 = objecttools.assignrepr_list
l2 = objecttools.assignrepr_list2
l3 = objecttools.assignrepr_list3
blanks = (indent + 4) * " "
lines = [f"{prefix}{type(self).__name__}("]
if self.nmb_inputs != 1: # type: ignore[has-type]
lines.append(f"{blanks}nmb_inputs={self.nmb_inputs},") # type: ignore[has-type] # pylint: disable=line-too-long
if self.nmb_neurons != (1,):
lines.append(f"{blanks}nmb_neurons={self.nmb_neurons},")
if self.nmb_outputs != 1: # type: ignore[has-type]
lines.append(f"{blanks}nmb_outputs={self.nmb_outputs},") # type: ignore[has-type] # pylint: disable=line-too-long
lines.append(l2(self.weights_input, f"{blanks}weights_input=") + ",")
if self.nmb_layers > 1:
lines.append(l3(self.weights_hidden, f"{blanks}weights_hidden=") + ",")
lines.append(l2(self.weights_output, f"{blanks}weights_output=") + ",")
lines.append(l2(self.intercepts_hidden, f"{blanks}intercepts_hidden=") + ",")
lines.append(l1(self.intercepts_output, f"{blanks}intercepts_output=") + ",")
if numpy.any(self.activation != 1):
lines.append(l2(self.activation, f"{blanks}activation=") + ",")
lines.append(f'{indent*" "})')
return "\n".join(lines)
def __repr__(self) -> str:
return self.assignrepr(prefix="")
def __hash__(self) -> int:
return id(self)
def __eq__(self, other: object) -> bool:
def _equal_array(
x: Union[Vector[float], Matrix[int], Matrix[float]],
y: Union[Vector[float], Matrix[int], Matrix[float]],
) -> bool:
idxs = ~(numpy.isnan(x) * numpy.isnan(y))
return bool(numpy.all(x[idxs] == y[idxs]))
if id(self) == id(other):
return True
if isinstance(other, ANN):
return (
self.shape_inputs == other.shape_inputs
and self.shape_neurons == other.shape_neurons
and self.shape_outputs == other.shape_outputs
and _equal_array(self.weights_input[:], other.weights_input[:])
and _equal_array(self.weights_hidden, other.weights_hidden)
and _equal_array(self.weights_output, other.weights_output)
and _equal_array(self.intercepts_hidden, other.intercepts_hidden)
and _equal_array(self.intercepts_output, other.intercepts_output)
and _equal_array(self.activation, other.activation)
)
return NotImplemented