Source code for hydpy.core.testtools

# -*- coding: utf-8 -*-
"""This module implements tools for testing *HydPy* and its models."""
# import...
# ...from standard library
from __future__ import annotations
import abc
import builtins
import contextlib
import copy
import datetime
import doctest
import importlib
import inspect
import io
import itertools
import os
import shutil
import sys
import types
import warnings
from typing import *

# ...from site-packages
import numpy

# ...from HydPy
import hydpy
from hydpy import docs
from hydpy.docs import autofigs
from hydpy.core import devicetools
from hydpy.core import exceptiontools
from hydpy.core import hydpytools
from hydpy.core import importtools
from hydpy.core import objecttools
from hydpy.core import sequencetools
from hydpy.core import timetools
from hydpy.core import typingtools
from hydpy.core import variabletools
from hydpy.core.typingtools import *
from hydpy.tests import iotesting

if TYPE_CHECKING:
    import matplotlib
    from matplotlib import pyplot
    import pandas
    import plotly
    from plotly import subplots
    from hydpy.core import modeltools
else:
    matplotlib = exceptiontools.OptionalImport("matplotlib", ["matplotlib"], locals())
    pyplot = exceptiontools.OptionalImport("pyplot", ["matplotlib.pyplot"], locals())
    pandas = exceptiontools.OptionalImport("pandas", ["pandas"], locals())
    plotly = exceptiontools.OptionalImport("plotly", ["plotly"], locals())
    subplots = exceptiontools.OptionalImport("subplots", ["plotly.subplots"], locals())


[docs] class StdOutErr: """Replaces `sys.stdout` and `sys.stderr` temporarily when calling method |Tester.perform_tests| of class |Tester|.""" indent: int texts: List[str] def __init__(self, indent: int = 0): self.indent = indent self.stdout = sys.stdout self.stderr = sys.stderr self.encoding = sys.stdout.encoding self.texts = [] def __enter__(self) -> None: self.encoding = sys.stdout.encoding # just for testing: sys.stdout = self # type: ignore[assignment] sys.stderr = self # type: ignore[assignment] def __exit__( self, exception_type: Type[BaseException], exception_value: BaseException, traceback: types.TracebackType, ) -> None: if not self.texts: self.print_("no failures occurred") else: for text in self.texts: self.print_(text) sys.stdout = self.stdout sys.stderr = self.stderr
[docs] def write(self, text: str) -> None: """Memorise the given text for later writing.""" self.texts.extend(text.split("\n"))
[docs] def print_(self, text: str) -> None: """Print the memorised text to the original `sys.stdout`.""" if text.strip(): self.stdout.write(self.indent * " " + text + "\n")
[docs] def flush(self) -> None: """Do nothing."""
[docs] class Tester: """Tests either a base or an application model. Usually, a |Tester| object is initialised at the end of the `__init__` file of its base model or the end of the module of an application model. >>> from hydpy.models import hland, hland_v1 >>> hland.tester.package 'hydpy.models.hland' >>> hland_v1.tester.package 'hydpy.models' """ filepath: str package: str ispackage: bool def __init__(self) -> None: frame = inspect.currentframe() assert isinstance(frame, types.FrameType) frame = frame.f_back assert isinstance(frame, types.FrameType) self.filepath = frame.f_code.co_filename self.package = frame.f_locals["__package__"] self.ispackage = os.path.split(self.filepath)[-1] == "__init__.py" @property def filenames(self) -> List[str]: """The filenames which define the considered base or application model. >>> from hydpy.models import hland, hland_v1 >>> from pprint import pprint >>> pprint(hland.tester.filenames) ['__init__.py', 'hland_aides.py', 'hland_constants.py', 'hland_control.py', 'hland_derived.py', 'hland_factors.py', 'hland_fixed.py', 'hland_fluxes.py', 'hland_inputs.py', 'hland_logs.py', 'hland_masks.py', 'hland_model.py', 'hland_outlets.py', 'hland_parameters.py', 'hland_sequences.py', 'hland_states.py'] >>> hland_v1.tester.filenames ['hland_v1.py'] """ if self.ispackage: filenames = os.listdir(os.path.dirname(self.filepath)) return sorted(fn for fn in filenames if fn.endswith(".py")) return [os.path.split(self.filepath)[1]] @property def modulenames(self) -> List[str]: """The module names to be taken into account for testing. >>> from hydpy.models import hland, hland_v1 >>> from pprint import pprint >>> pprint(hland.tester.modulenames) ['hland_aides', 'hland_constants', 'hland_control', 'hland_derived', 'hland_factors', 'hland_fixed', 'hland_fluxes', 'hland_inputs', 'hland_logs', 'hland_masks', 'hland_model', 'hland_outlets', 'hland_parameters', 'hland_sequences', 'hland_states'] >>> hland_v1.tester.modulenames ['hland_v1'] """ return [ os.path.split(fn)[-1].split(".")[0] for fn in self.filenames if (fn.endswith(".py") and not fn.startswith("_")) ]
[docs] def perform_tests(self) -> None: """Perform all doctests either in Python or in Cython mode depending on the state of |Options.usecython| set in module |pub|. Usually, |Tester.perform_tests| is triggered automatically by a |Cythonizer| object assigned to the same base or application model as a |Tester| object. However, you are free to call it any time when in doubt of the functionality of a particular base or application model. Doing so might change some of the states of your current configuration, but only temporarily (besides "projectname") we pick the |Timegrids| object of module |pub| as an example, which is changed multiple times during testing but finally reset to the original value): >>> from hydpy import pub >>> pub.projectname = "test" >>> pub.timegrids = "2000-01-01", "2001-01-01", "1d" >>> from hydpy.models import hland, hland_v1 >>> hland.tester.perform_tests() # doctest: +ELLIPSIS Test package hydpy.models.hland in ...ython mode. * hland_aides: no failures occurred * hland_constants: no failures occurred * hland_control: no failures occurred * hland_derived: no failures occurred * hland_factors: no failures occurred * hland_fixed: no failures occurred * hland_fluxes: no failures occurred * hland_inputs: no failures occurred * hland_logs: no failures occurred * hland_masks: no failures occurred * hland_model: no failures occurred * hland_outlets: no failures occurred * hland_parameters: no failures occurred * hland_sequences: no failures occurred * hland_states: no failures occurred >>> hland_v1.tester.perform_tests() # doctest: +ELLIPSIS Test module hland_v1 in ...ython mode. * hland_v1: no failures occurred >>> pub.projectname 'test' >>> pub.timegrids Timegrids("2000-01-01 00:00:00", "2001-01-01 00:00:00", "1d") To show the reporting of possible errors, we change the string representation of parameter |hland_control.ZoneType| temporarily. Again, the |Timegrids| object is reset to its initial state after testing: >>> from unittest import mock >>> with mock.patch( ... "hydpy.models.hland.hland_control.ZoneType.__repr__", ... return_value="damaged"): ... hland.tester.perform_tests() # doctest: +ELLIPSIS Test package hydpy.models.hland in ...ython mode. * hland_aides: no failures occurred * hland_constants: no failures occurred * hland_control: ******...hland_control.py", line ..., in \ hydpy.models.hland.hland_control.ZoneType Failed example: zonetype Expected: zonetype(FIELD, FOREST, GLACIER, ILAKE, ILAKE, FIELD) Got: damaged ************************************************************\ ********** 1 items had failures: 1 of 6 in hydpy.models.hland.hland_control.ZoneType ***Test Failed*** 1 failures. * hland_derived: no failures occurred ... * hland_states: no failures occurred >>> pub.projectname 'test' >>> pub.timegrids Timegrids("2000-01-01 00:00:00", "2001-01-01 00:00:00", "1d") """ opt = hydpy.pub.options print( f"Test {'package' if self.ispackage else 'module'} " f"{self.package if self.ispackage else self.modulenames[0]} " f"in {'C' if hydpy.pub.options.usecython else 'P'}ython mode." ) for name in self.modulenames: print(f" * {name}:") with StdOutErr(indent=8), opt.ellipsis(0), opt.printprogress( False ), opt.reprcomments(False), opt.reprdigits(6), opt.usedefaultvalues( False ), opt.utclongitude( 15 ), opt.utcoffset( 60 ), opt.timestampleft( True ), opt.warnsimulationstep( False ), opt.warntrim( False ), opt.parameterstep( timetools.Period("1d") ), opt.simulationstep( timetools.Period() ), devicetools.clear_registries_temporarily(): projectname = exceptiontools.getattr_( hydpy.pub, "projectname", None, str ) del hydpy.pub.projectname timegrids = exceptiontools.getattr_(hydpy.pub, "timegrids", None) del hydpy.pub.timegrids plotting_options = IntegrationTest.plotting_options IntegrationTest.plotting_options = PlottingOptions() try: modulename = ".".join((self.package, name)) module = importlib.import_module(modulename) with warnings.catch_warnings(): doctest.testmod( module, extraglobs={"testing": True}, optionflags=doctest.ELLIPSIS, ) finally: if projectname is not None: hydpy.pub.projectname = projectname if timegrids is not None: hydpy.pub.timegrids = timegrids IntegrationTest.plotting_options = plotting_options
[docs] class Array: """Assures that attributes are |numpy.ndarray| objects.""" def __setattr__(self, name, value): object.__setattr__(self, name, numpy.array(value))
[docs] class ArrayDescriptor: """A descriptor for handling values of |Array| objects.""" def __init__(self): self.values = Array() def __set__(self, obj, values): self.__delete__(obj) if values is not None: names = tuple(value[0].name for value in values) duplicates = any(names.count(name) > 1 for name in names) for key, value in values: if duplicates: name = objecttools.devicename(key) setattr(self.values, f"{name}_{key.name}", value) else: setattr(self.values, key.name, value) def __get__(self, obj, type_=None): return self.values def __delete__(self, obj): for name in list(vars(self.values).keys()): delattr(self.values, name)
[docs] class Test: """Base class for |IntegrationTest| and |UnitTest|. This base class defines the printing of the test results primarily. How the tests shall be prepared and performed is to be defined in its subclasses. """ parseqs: Any HEADER_OF_FIRST_COL: Any inits = ArrayDescriptor() """Stores arrays for setting the same values of parameters and/or sequences before each new experiment.""" @property @abc.abstractmethod def raw_first_col_strings(self) -> List[str]: """To be implemented by the subclasses of |Test|."""
[docs] @abc.abstractmethod def get_output_array(self, parseqs): """To be implemented by the subclasses of |Test|."""
@property def nmb_rows(self) -> int: """The number of rows of the table.""" return len(self.raw_first_col_strings) + 1 @property def nmb_cols(self) -> int: """The number of columns in the table.""" nmb = 1 for parseq in self.parseqs: nmb += max(parseq.numberofvalues, 1) return nmb @property def raw_header_strings(self) -> List[str]: """All raw strings for the tables header.""" strings = [self.HEADER_OF_FIRST_COL] for parseq in self.parseqs: for dummy in range(parseq.numberofvalues - 1): strings.append("") if (parseq.name == "sim") and isinstance(parseq, sequencetools.Sequence_): strings.append(parseq.subseqs.node.name) else: strings.append(parseq.name) return strings @property def raw_body_strings(self) -> List[List[str]]: """All raw strings for the body of the table.""" strings = [] for idx, first_string in enumerate(self.raw_first_col_strings): strings.append([first_string]) for parseq in self.parseqs: array = self.get_output_array(parseq) if parseq.NDIM == 0: strings[-1].append(objecttools.repr_(array[idx])) elif len(parseq) == 0: strings[-1].append("-") else: strings[-1].extend( objecttools.repr_(value) for value in array[idx].flatten() ) return strings @property def raw_strings(self) -> List[List[str]]: """All raw strings for the complete table.""" return [self.raw_header_strings] + self.raw_body_strings @property def col_widths(self) -> List[int]: """The widths of all columns of the table.""" strings = self.raw_strings widths: List[int] = [] for jdx in range(self.nmb_cols): widths.append(0) for idx in range(self.nmb_rows): widths[-1] = max(len(strings[idx][jdx]), widths[-1]) return widths @property def col_separators(self) -> List[str]: """The separators for adjacent columns.""" seps = ["| "] for parseq in self.parseqs: seps.append(" | ") for dummy in range(parseq.numberofvalues - 1): seps.append(" ") seps.append(" |") return seps @property def row_nmb_characters(self) -> int: """The number of characters of a single row of the table.""" return sum(self.col_widths) + sum((len(sep) for sep in self.col_separators)) @staticmethod def _interleave( separators: Sequence[str], strings: Iterable[str], widths: Iterable[int], ) -> str: """Generate a table line from the given arguments.""" lst = [ value for (separator, string, width) in zip(separators, strings, widths) for value in (separator, string.rjust(width)) ] lst.append(separators[-1]) return "".join(lst)
[docs] def make_table( self, idx1: Optional[int] = None, idx2: Optional[int] = None, ) -> str: """Return the result table between the given indices.""" lines = [] col_widths = self.col_widths col_separators = self.col_separators lines.append( self._interleave( self.col_separators, self.raw_header_strings, col_widths, ) ) lines.append("-" * self.row_nmb_characters) for strings_in_line in self.raw_body_strings[idx1:idx2]: lines.append( self._interleave( col_separators, strings_in_line, col_widths, ) ) return "\n".join(lines)
[docs] def print_table( self, idx1: Optional[int] = None, idx2: Optional[int] = None, ) -> None: """Print the result table between the given indices.""" print(self.make_table(idx1=idx1, idx2=idx2))
[docs] class PlottingOptions: """Plotting options of class |IntegrationTest|.""" width: int height: int axis1: typingtools.MayNonerable1[sequencetools.IOSequence] axis2: typingtools.MayNonerable1[sequencetools.IOSequence] def __init__(self) -> None: self.width = 600 self.height = 300 self.selected = None self.activated = None self.axis1 = None self.axis2 = None
[docs] class IntegrationTest(Test): """Defines model integration doctests. The functionality of |IntegrationTest| is easiest to understand by inspecting doctests like the ones of modules |llake_v1| or |arma_v1|. Note that all condition sequences (state and logging sequences) are initialised in accordance with the values are given as `inits` values. The values of the simulation sequences of outlet and sender nodes are always set to zero before each test run. All other parameter and sequence values can be changed between different test runs. """ HEADER_OF_FIRST_COL = "date" """The header of the first column containing dates.""" plotting_options = PlottingOptions() def __init__( self, element: devicetools.Element, seqs=None, inits=None, ) -> None: """Prepare the element and its nodes, put them into a HydPy object, and make their sequences ready for use for integration testing.""" del self.inits self.element = element self.elements = devicetools.Element.query_all() self.nodes = devicetools.Node.query_all() self.prepare_node_sequences() self.prepare_input_model_sequences() self.parseqs = seqs if seqs else self.extract_print_sequences() self.inits = inits self.model = element.model hydpytools.HydPy.nmb_instances = 0 self.hydpy = hydpytools.HydPy() self.hydpy.update_devices( nodes=self.nodes, elements=self.elements, ) self._src = None @overload def __call__( self, filename: Optional[str] = None, axis1: typingtools.MayNonerable1[sequencetools.IOSequence] = None, axis2: typingtools.MayNonerable1[sequencetools.IOSequence] = None, update_parameters: bool = True, get_conditions: Literal[None] = None, use_conditions: Optional[timetools.DateConstrArg] = None, ) -> None: """do not return conditions""" @overload def __call__( self, filename: Optional[str] = None, axis1: typingtools.MayNonerable1[sequencetools.IOSequence] = None, axis2: typingtools.MayNonerable1[sequencetools.IOSequence] = None, update_parameters: bool = True, get_conditions: timetools.DateConstrArg = None, use_conditions: Optional[Dict[str, Dict[str, Union[float, ArrayFloat]]]] = None, ) -> Dict[sequencetools.IOSequence, Union[float, numpy.array]]: """do return conditions""" def __call__( self, filename=None, axis1=None, axis2=None, update_parameters=True, get_conditions=None, use_conditions=None, ): """Prepare and perform an integration test and print and eventually plot its results. Note that the conditions defined under |IntegrationTest.inits| override the ones given via keyword `use_conditions`. """ self.prepare_model( update_parameters=update_parameters, use_conditions=use_conditions, ) seq2value = self._perform_simulation(get_conditions) self.print_table() if filename: self.plot(filename=filename, axis1=axis1, axis2=axis2) return seq2value def _perform_simulation(self, get_conditions): if get_conditions: sim = copy.deepcopy(hydpy.pub.timegrids.sim) date = timetools.Date(get_conditions) if date > hydpy.pub.timegrids.init.firstdate: hydpy.pub.timegrids.sim.lastdate = date self.hydpy.simulate() conditions = self.element.model.sequences.conditions if date < hydpy.pub.timegrids.init.lastdate: hydpy.pub.timegrids.sim.dates = date, sim.lastdate self.hydpy.simulate() hydpy.pub.timegrids.sim.firstdate = sim.firstdate return conditions self.hydpy.simulate() return None @property def _datetimes(self): return tuple(date.datetime for date in hydpy.pub.timegrids.sim) @property def raw_first_col_strings(self): """The raw date strings of the first column, except the header.""" return tuple(_.strftime(self.dateformat) for _ in self._datetimes) @property def dateformat(self) -> str: """Format string for printing dates in the first column of the table. See the documentation on module |datetime| for the format strings allowed. You can query and change property |IntegrationTest.dateformat|: >>> from hydpy import Element, IntegrationTest, prepare_model, pub >>> pub.timegrids = "2000-01-01", "2001-01-01", "1d" >>> element = Element("element", outlets="node") >>> element.model = prepare_model("hland_v1") >>> __package__ = "testpackage" >>> tester = IntegrationTest(element) >>> tester.dateformat '%Y-%m-%d %H:%M:%S' Passing an ill-defined format string leads to the following error: >>> tester.dateformat = 999 Traceback (most recent call last): ... ValueError: The given date format `999` is not a valid format \ string for `datetime` objects. Please read the documentation on module \ datetime of the Python standard library for for further information. >>> tester.dateformat = "%x" >>> tester.dateformat '%x' """ dateformat = vars(self).get("dateformat") if dateformat is None: return timetools.Date.formatstrings["iso2"] return dateformat @dateformat.setter def dateformat(self, dateformat: str) -> None: try: datetime.datetime(2000, 1, 1).strftime(dateformat) except BaseException as exc: raise ValueError( f"The given date format `{dateformat}` is not a valid " f"format string for `datetime` objects. Please read " f"the documentation on module datetime of the Python " f"standard library for for further information." ) from exc vars(self)["dateformat"] = dateformat
[docs] def get_output_array(self, parseqs): """Return the array containing the output results of the given sequence.""" return parseqs.series
[docs] def prepare_node_sequences(self): """Prepare the simulations series of all nodes. This preparation might not be suitable for all types of integration tests. Prepare those node sequences manually, for which this method does not result in the desired outcome.""" for node in self.nodes: if not node.entries: node.deploymode = "oldsim" sim = node.sequences.sim sim.prepare_series(allocate_ram=False) sim.prepare_series(allocate_ram=True)
[docs] def prepare_input_model_sequences(self): """Configure the input sequences of the model in a manner that allows for applying their time-series data in integration tests.""" prepare_series = self.element.model.sequences.inputs.prepare_series prepare_series(allocate_ram=False) prepare_series(allocate_ram=True)
[docs] def extract_print_sequences(self): """Return a list of all input, factor, flux, and state sequences of the model and the simulation sequences of all nodes.""" seqs = [] for name in ("inputs", "factors", "fluxes", "states"): subseqs = getattr(self.element.model.sequences, name, ()) for seq in subseqs: seqs.append(seq) for node in self.nodes: seqs.append(node.sequences.sim) return seqs
[docs] def prepare_model( self, update_parameters: bool, use_conditions: Optional[Dict[str, Dict[str, Union[float, ArrayFloat]]]], ) -> None: """Derive the secondary parameter values, prepare all required time series and set the initial conditions.""" if update_parameters: self.model.parameters.update() for flag in (False, True): self.element.prepare_factorseries(allocate_ram=flag) self.element.prepare_fluxseries(allocate_ram=flag) self.element.prepare_stateseries(allocate_ram=flag) self.reset_outputs() if use_conditions: with hydpy.pub.options.trimvariables(False): self.element.model.sequences.conditions = use_conditions self.reset_inits()
[docs] def reset_outputs(self): """Set the values of the simulation sequences of all outlet nodes to zero.""" for node in self.nodes: if (node in self.element.outlets) or (node in self.element.senders): node.sequences.sim[:] = 0.0
[docs] def reset_inits(self): """Set all initial conditions of all models.""" with hydpy.pub.options.trimvariables(False): inits = self.inits for subname in ("states", "logs"): for element in self.elements: for seq in getattr(element.model.sequences, subname, ()): value = getattr(inits, seq.name, None) if value is None: value = getattr(inits, f"{element.name}_{seq.name}", None) if value is not None: seq(value)
[docs] def plot( self, filename: str, axis1: typingtools.MayNonerable1[sequencetools.IOSequence] = None, axis2: typingtools.MayNonerable1[sequencetools.IOSequence] = None, ): """Save a plotly HTML file plotting the current test results. (Optional) arguments: * filename: Name of the file. If necessary, the file ending `html` is added automatically. The file is stored in the `html_` folder of subpackage `docs`. * act_sequences: List of the sequences to be shown initially (deprecated). * axis1: sequences to be shown initially on the first axis. * axis2: sequences to be shown initially on the second axis. """ def _update_act_names(sequence_, name_) -> None: if isinstance(sequence_, act_types1): act_names1.append(name_) if isinstance(sequence_, act_types2): act_names2.append(name_) if not filename.endswith(".html"): filename += ".html" if self.plotting_options.activated: axis1 = self.plotting_options.activated axis2 = () else: if not (axis1 or axis2): axis1 = self.plotting_options.axis1 axis2 = self.plotting_options.axis2 if axis1 is None: axis1 = self.parseqs if axis2 is None: axis2 = () axis1 = objecttools.extract(axis1, sequencetools.IOSequence) axis2 = objecttools.extract(axis2, sequencetools.IOSequence) sel_sequences = self.plotting_options.selected if sel_sequences is None: sel_sequences = self.parseqs sel_sequences = sorted(sel_sequences, key=lambda seq_: seq_.name) act_types1 = tuple(type(seq_) for seq_ in axis1) act_types2 = tuple(type(seq_) for seq_ in axis2) sel_names, sel_series, sel_units = [], [], [] act_names1, act_names2 = [], [] for sequence in sel_sequences: name = type(sequence).__name__ if sequence.NDIM == 0: sel_names.append(name) sel_units.append(sequence.unit) sel_series.append(list(sequence.series)) _update_act_names(sequence, name) elif all(length == 1 for length in sequence.shape): sel_names.append(name) sel_units.append(sequence.unit) sel_series.append(list(sequence.series[:, 0])) _update_act_names(sequence, name) else: ranges = (range(length) for length in sequence.shape) for idxs in itertools.product(*ranges): subname = f"{name}_{'-'.join(str(idx+1) for idx in idxs)}" sel_names.append(subname) sel_units.append(sequence.unit) series = sequence.series for idx in idxs: series = series[:, idx] sel_series.append(list(series)) _update_act_names(sequence, subname) fig = subplots.make_subplots(rows=1, cols=1, specs=[[{"secondary_y": True}]]) fig.update_xaxes(showgrid=False, zeroline=False) fig.update_yaxes(showgrid=False, zeroline=False) fig.update_layout(showlegend=True) cmap = pyplot.get_cmap("tab20", 2 * len(sel_names)) dates = list( pandas.date_range( start=hydpy.pub.timegrids.init.firstdate.datetime, end=hydpy.pub.timegrids.init.lastdate.datetime, freq=hydpy.pub.timegrids.init.stepsize.timedelta, ) ) for idx, (name, series, unit) in enumerate( zip(sel_names, sel_series, sel_units) ): fig.add_trace( plotly.graph_objects.Scattergl( x=dates, y=series, name=f"{name} [{unit}] (1)", visible=name in act_names1, legendgroup="axis 1", line={"color": matplotlib.colors.rgb2hex(cmap(2 * idx))}, ), ) fig.add_trace( plotly.graph_objects.Scattergl( x=dates, y=series, name=f"{name} [{unit}] (2)", visible=name in act_names2, legendgroup="axis 2", line={"color": matplotlib.colors.rgb2hex(cmap(2 * idx + 1))}, ), secondary_y=True, ) buttons = [] for label, visibles in ( ["add all to y-axis 1", [True, False]], ["remove all", [False, False]], ["add all to y-axis 2", [False, True]], ): subbuttons = [ { "label": label, "method": "restyle", "args": [{"visible": len(sel_sequences) * visibles}], } ] for idx, name in enumerate(sel_names): subbuttons.append( { "label": name, "method": "restyle", "args": [{"visible": visibles}, [2 * idx, 2 * idx + 1]], } ) buttons.append(subbuttons) fig.update_layout( hovermode="x unified", updatemenus=[ { "active": 0, "xanchor": "left", "x": 0.0, "yanchor": "bottom", "y": 1.02, "buttons": buttons[0], }, { "active": 0, "xanchor": "center", "x": 0.5, "yanchor": "bottom", "y": 1.02, "buttons": buttons[1], }, { "active": 0, "xanchor": "right", "x": 1.0, "yanchor": "bottom", "y": 1.02, "buttons": buttons[2], }, ], legend={"tracegroupgap": 100}, ) docspath = docs.__path__[0] fig.write_html(os.path.join(docspath, "html_", filename))
[docs] class UnitTest(Test): """Defines unit doctests for a single model method.""" HEADER_OF_FIRST_COL = "ex." """The header of the first column containing sequential numbers.""" nexts = ArrayDescriptor() """Stores arrays for setting different values of parameters and/or sequences before each new experiment.""" results = ArrayDescriptor() """Stores arrays with the resulting values of parameters and/or sequences of each new experiment.""" def __init__(self, model, method, first_example=1, last_example=1, parseqs=None): del self.inits del self.nexts del self.results self.model = model self.method = method self.first_example_calc = first_example self.last_example_calc = last_example self.first_example_plot = first_example self.last_example_plot = last_example self.parseqs = parseqs self.memorise_inits() self.prepare_output_arrays() @property def nmb_examples(self): """The number of examples to be calculated.""" return self.last_example_calc - self.first_example_calc + 1 @property def idx0(self): """The first index of the examples selected for printing.""" return self.first_example_plot - self.first_example_calc @property def idx1(self): """The last index of the examples selected for printing.""" return self.nmb_examples - (self.last_example_calc - self.last_example_plot) def __call__(self, first_example=None, last_example=None): if first_example is None: self.first_example_plot = self.first_example_calc else: self.first_example_plot = first_example if last_example is None: self.last_example_plot = self.last_example_calc else: self.last_example_plot = last_example for idx in range(self.nmb_examples): self.reset_inits() self._update_inputs(idx) self.method() self._update_outputs(idx) self.print_table(self.idx0, self.idx1)
[docs] def get_output_array(self, parseqs): """Return the array containing the output results of the given parameter or sequence.""" return getattr(self.results, parseqs.name)
@property def raw_first_col_strings(self): """The raw integer strings of the first column, except the header.""" return [ str(example) for example in range(self.first_example_plot, self.last_example_plot + 1) ]
[docs] def memorise_inits(self): """Memorise all initial conditions.""" for parseq in self.parseqs: value = exceptiontools.getattr_(parseq, "value", None) if value is not None: setattr(self.inits, parseq.name, value)
[docs] def prepare_output_arrays(self): """Prepare arrays for storing the calculated results for the respective parameters and/or sequences.""" for parseq in self.parseqs: shape = [len(self.raw_first_col_strings)] + list(parseq.shape) type_ = getattr(parseq, "TYPE", float) init = 0 if issubclass(type_, int) else numpy.nan array = numpy.full(shape, init, type_) setattr(self.results, parseq.name, array)
[docs] def reset_inits(self): """Set all initial conditions.""" for parseq in self.parseqs: inits = getattr(self.inits, parseq.name, None) if inits is not None: parseq(inits)
def _update_inputs(self, idx): """Update the actual values with the |UnitTest.nexts| data of the given index.""" for parseq in self.parseqs: if hasattr(self.nexts, parseq.name): parseq(getattr(self.nexts, parseq.name)[idx]) def _update_outputs(self, idx): """Update the |UnitTest.results| data with the actual values of the given index.""" for parseq in self.parseqs: if hasattr(self.results, parseq.name): getattr(self.results, parseq.name)[idx] = parseq.values
class _Open: __readingerror = ( "Reading is not possible at the moment. Please see the " "documentation on class `Open` of module `testtools` " "for further information." ) def __init__(self, path, mode, *args, **kwargs): # pylint: disable=unused-argument # all further positional and keyword arguments are ignored. self.path = path.replace(os.sep, "/") self.mode = mode self.texts = [] self.entered = False def __enter__(self): self.entered = True return self def __exit__(self, exception, message, traceback_): self.close() def read(self): """Raise a |NotImplementedError| in any case.""" raise NotImplementedError(self.__readingerror) def readline(self): """Raise a |NotImplementedError| in any case.""" raise NotImplementedError(self.__readingerror) def readlines(self): """Raise a |NotImplementedError| in any case.""" raise NotImplementedError(self.__readingerror) def write(self, text): """Replace the `write` method of file objects.""" self.texts.append(text) def writelines(self, lines): """Replace the `writelines` method of file objects.""" self.texts.extend(lines) def close(self): """Replace the `close` method of file objects.""" text = "".join(self.texts) maxchars = len(self.path) lines = [] for line in text.split("\n"): if not line: line = "<BLANKLINE>" lines.append(line) maxchars = max(maxchars, len(line)) text = "\n".join(lines) print("~" * maxchars) print(self.path) print("-" * maxchars) print(text) print("~" * maxchars)
[docs] class Open: """Replace |open| in doctests temporarily. Class |Open| to intended to make writing to files visible and testable in docstrings. Therefore, Python's built-in function |open| is temporarily replaced by another object, printing the filename and the file content, as shown in the following example: >>> import os >>> path = os.path.join("folder", "test.py") >>> from hydpy import Open >>> with Open(): ... with open(path, "w") as file_: ... file_.write("first line\\n") ... file_.writelines(["\\n", "third line\\n"]) ~~~~~~~~~~~~~~ folder/test.py -------------- first line <BLANKLINE> third line <BLANKLINE> ~~~~~~~~~~~~~~ Note that, for simplicity, the UNIX style path separator `/` is used to print the file path on all systems. Class |Open| is rather restricted at the moment. Functionalities like reading are not supported so far: >>> with Open(): ... with open(path, "r") as file_: ... file_.read() Traceback (most recent call last): ... NotImplementedError: Reading is not possible at the moment. \ Please see the documentation on class `Open` of module `testtools` \ for further information. >>> with Open(): ... with open(path, "r") as file_: ... file_.readline() Traceback (most recent call last): ... NotImplementedError: Reading is not possible at the moment. \ Please see the documentation on class `Open` of module `testtools` \ for further information. >>> with Open(): ... with open(path, "r") as file_: ... file_.readlines() Traceback (most recent call last): ... NotImplementedError: Reading is not possible at the moment. \ Please see the documentation on class `Open` of module `testtools` \ for further information. """ def __init__(self): self.open = builtins.open def __enter__(self): builtins.open = _Open return self def __exit__(self, exception, message, traceback_): builtins.open = self.open
[docs] class TestIO: """Prepare an environment for testing IO functionalities. Primarily, |TestIO| changes the current working during the execution of with| blocks. Inspecting your current working directory, |os| will likely find no file called `testfile.txt`: >>> import os >>> os.path.exists("testfile.txt") False If some tests require writing such a file, this should be done within HydPy's `iotesting` folder in subpackage `tests`, which is achieved by applying the `with` statement on |TestIO|: >>> from hydpy import TestIO >>> with TestIO(): ... open("testfile.txt", "w").close() ... print(os.path.exists("testfile.txt")) True After the `with` block, the working directory is reset automatically: >>> os.path.exists("testfile.txt") False Nevertheless, `testfile.txt` still exists in the folder `iotesting`: >>> with TestIO(): ... print(os.path.exists("testfile.txt")) True Optionally, files and folders created within the current `with` block can be removed automatically by setting `clear_own` to |True| (modified files and folders are not affected): >>> with TestIO(clear_own=True): ... open("testfile.txt", "w").close() ... os.makedirs("testfolder") ... print(os.path.exists("testfile.txt"), ... os.path.exists("testfolder")) True True >>> with TestIO(clear_own=True): ... print(os.path.exists("testfile.txt"), ... os.path.exists("testfolder")) True False Alternatively, all files and folders contained in folder `iotesting` can be removed after leaving the `with` block: >>> with TestIO(clear_all=True): ... os.makedirs("testfolder") ... print(os.path.exists("testfile.txt"), ... os.path.exists("testfolder")) True True >>> with TestIO(clear_own=True): ... print(os.path.exists("testfile.txt"), ... os.path.exists("testfolder")) False False For just clearing the `iofolder`, one can call method |TestIO.clear| alternatively: >>> with TestIO(): ... open("testfile.txt", "w").close() ... print(os.path.exists("testfile.txt")) True >>> TestIO.clear() >>> with TestIO(): ... print(os.path.exists("testfile.txt")) False Note that class |TestIO| copies all eventually generated `.coverage` files into the `test` subpackage to assure no covered lines are reported as uncovered. """ def __init__( self, clear_own: bool = False, clear_all: bool = False, ) -> None: self._clear_own = clear_own self._clear_all = clear_all self._path = None self._olds = None def __enter__(self) -> "TestIO": self._path = os.getcwd() iotestingpath: str = iotesting.__path__[0] os.chdir(os.path.join(iotestingpath)) if self._clear_own: self._olds = sorted(os.listdir(".")) return self def __exit__( self, exception_type: Type[BaseException], exception_value: BaseException, traceback_: types.TracebackType, ) -> None: for file in sorted(os.listdir(".")): if (file != "__init__.py") and ( self._clear_all or (self._clear_own and (file not in self._olds)) ): if os.path.exists(file): if os.path.isfile(file): os.remove(file) else: shutil.rmtree(file) os.chdir(self._path)
[docs] @classmethod def clear(cls) -> None: """Remove all files from the `iotesting` folder.""" with cls(clear_all=True): pass
[docs] def make_abc_testable(abstract: Type) -> Type: """Return a concrete version of the given abstract base class for testing purposes. Abstract base classes cannot be (and, at least in production code, should not be) instantiated: >>> from hydpy.core.netcdftools import NetCDFVariableBase >>> ncvar = NetCDFVariableBase() Traceback (most recent call last): ... TypeError: Can't instantiate abstract class NetCDFVariableBase with abstract \ methods array, read, subdevicenames However, it is convenient to do so for testing (partly) abstract base classes in doctests. The derived class returned by function |make_abc_testable| is identical with the original one, except that its protection against initialisation is disabled: >>> from hydpy import make_abc_testable, classname >>> ncvar = make_abc_testable(NetCDFVariableBase)(False, 1) To avoid confusion, |make_abc_testable| appends an underscore to the original class name: >>> classname(ncvar) 'NetCDFVariableBase_' """ concrete = type(abstract.__name__ + "_", (abstract,), {}) concrete.__abstractmethods__ = frozenset() return concrete
[docs] @contextlib.contextmanager def mock_datetime_now(testdatetime): """Let class method |datetime.datetime.now| of class |datetime.datetime| of module |datetime| return the given date for testing purposes within a "with-block". >>> import datetime >>> testdate = datetime.datetime(2000, 10, 1, 12, 30, 0, 999) >>> testdate == datetime.datetime.now() False >>> from hydpy import classname >>> classname(datetime.datetime) 'datetime' >>> from hydpy.core.testtools import mock_datetime_now >>> with mock_datetime_now(testdate): ... testdate == datetime.datetime.now() ... classname(datetime.datetime) True '_DateTime' >>> testdate == datetime.datetime.now() False >>> classname(datetime.datetime) 'datetime' The following test shows that mocking |datetime.datetime| does not interfere with initialising |Date| objects and that the relevant exceptions are properly handled: >>> from hydpy import Date >>> with mock_datetime_now(testdate): ... Date(datetime.datetime(2000, 10, 1, 12, 30, 0, 999)) Traceback (most recent call last): ... ValueError: While trying to initialise a `Date` object based on \ argument `2000-10-01 12:30:00.000999`, the following error occurred: \ For `Date` instances, the microsecond must be zero, \ but for the given `datetime` object it is `999` instead. >>> classname(datetime.datetime) 'datetime' """ _datetime = datetime.datetime class _DateTime(datetime.datetime): @classmethod def now(cls, tz=None): return testdatetime try: datetime.datetime = _DateTime yield finally: datetime.datetime = _datetime
[docs] class NumericalDifferentiator: """Approximate the derivatives of |ModelSequence| values based on the finite difference approach. .. _`here`: https://en.wikipedia.org/wiki/Finite_difference_coefficient Class |NumericalDifferentiator| is thought for testing purposes only. See, for example, the documentation on method |lstream_model.Calc_RHMDH_V1|, which uses a |NumericalDifferentiator| object to validate that this method calculates the derivative of sequence |lstream_aides.RHM| (`ysequence`) with respect to sequence |lstream_states.H| (`xsequence`) correctly. Therefore, it must know the relationship between |lstream_aides.RHM| and |lstream_states.H|, being defined by method |lstream_model.Calc_RHM_V1|. See also the documentation on method |lstream_model.Calc_AMDH_UMDH_V1|, which explains how to apply class |NumericalDifferentiator| on multiple target sequences (`ysequences`). Note that, in order to calculate the correct derivatives of sequences |lstream_aides.AM| and |lstream_aides.UM|, we need not only to pass |lstream_model.Calc_AM_UM_V1|, but also methods |lstream_model.Calc_RHM_V1| and |lstream_model.Calc_RHV_V1|, as sequences |lstream_aides.RHM| and |lstream_aides.RHV|, which are required for calculating |lstream_aides.AM| and |lstream_aides.UM|, depend on |lstream_states.H| themselves. Numerical approximations of derivatives are of limited precision. |NumericalDifferentiator| achieves the second order of accuracy due to using the coefficients given `here`_. If results are too inaccurate, you might improve them by changing the finite difference method (`backward` or `central` instead of `forward`) or by changing the default interval width `dx`. """ __NMBNODES = 3 __XSHIFTS = { "forward": numpy.array([0.0, 1.0, 2.0]), "backward": numpy.array([-2.0, -1.0, 0.0]), "central": numpy.array([-1.0, 0.0, 1.0]), } __YCOEFFS = { "forward": numpy.array([-3.0, 4.0, -1.0]) / 2.0, "backward": numpy.array([1.0, -4.0, 3]) / 2.0, "central": numpy.array([-1.0, 0.0, 1]) / 2.0, } def __init__( self, xsequence: sequencetools.ModelSequence, ysequences: Iterable[sequencetools.ModelSequence], methods: Iterable["modeltools.Method"], dx: float = 1e-6, method: Literal["forward", "central", "backward"] = "forward", ): self._xsequence = xsequence self._ysequences = tuple(ysequences) self._methods = tuple(methods) self._span = dx / 2.0 self._method = method @property def _ycoeffs(self) -> NDArrayFloat: return self.__YCOEFFS[self._method] / self._span @property def _xshifts(self) -> NDArrayFloat: return self.__XSHIFTS[self._method] * self._span @property def _yvalues(self) -> Dict[sequencetools.ModelSequence, NDArrayFloat]: xvalues = copy.deepcopy(self._xsequence.values) if not self._xsequence.NDIM: nmb = 1 else: nmb = len(xvalues) yvalues = { ysequence: numpy.empty((nmb, self.__NMBNODES)) for ysequence in self._ysequences } try: for idx, shift in enumerate(self._xshifts): self._xsequence.values = xvalues + shift for method in self._methods: method() for ysequence in self._ysequences: yvalues[ysequence][:, idx] = copy.deepcopy(ysequence.values) return yvalues finally: self._xsequence.values = xvalues @property def _derivatives(self) -> Dict[sequencetools.ModelSequence, NDArrayFloat]: return { ysequence: numpy.dot(self._ycoeffs, yvalues.T) for ysequence, yvalues in self._yvalues.items() } def __call__(self): for ysequence, derivatives in self._derivatives.items(): print(f"d_{ysequence.name}/d_{self._xsequence.name}", end=": ") objecttools.print_values(derivatives, width=1000)
[docs] def update_integrationtests( applicationmodel: Union[types.ModuleType, str], resultfilepath: str = "update_integrationtests.txt", ) -> None: """Write the docstring of the given application model, updated with the current simulation results, to file. Sometimes, even tiny model-related changes bring a great deal of work concerning *HydPy's* integration test strategy. For example, if you modify the value of a fixed parameter, the results of possibly dozens of integration tests of your application model might become wrong. In such situations, function |update_integrationtests| helps you in replacing all integration tests results at once. Therefore, it calculates the new results, updates the old module docstring and writes it. You only need to copy-paste the printed result into the affected module. But be aware that function |update_integrationtests| cannot guarantee the correctness of the new results. Whenever in doubt if the new results are really correct under all possible conditions, you should inspect and replace each integration test result manually. In the following example, we disable method |conv_model.Pass_Outputs_V1| temporarily. Accordingly, application model |conv_v001| does not pass any output to its outlet nodes, which is why the last four columns of both integration test tables now contain zero value only (we can perform this mocking-based test in Python-mode only): >>> from hydpy import pub, TestIO, update_integrationtests >>> from unittest import mock >>> pass_output = "hydpy.models.conv.conv_model.Pass_Outputs_V1.__call__" >>> with TestIO(), pub.options.usecython(False), mock.patch(pass_output): ... update_integrationtests("conv_v001", "temp.txt") ... with open("temp.txt") as resultfile: ... print(resultfile.read()) # doctest: +ELLIPSIS Number of replacements: 2 <BLANKLINE> Nearest-neighbour interpolation. ... test() | date | inputs | outputs | in1 | in2 | out1 \ | out2 | out3 | out4 | -----------------------------------------------------------------------\ ---------------------- | 2000-01-01 | 1.0 4.0 | 1.0 4.0 1.0 1.0 | 1.0 | 4.0 | 0.0 \ | 0.0 | 0.0 | 0.0 | | 2000-01-02 | 2.0 nan | 2.0 nan 2.0 2.0 | 2.0 | nan | 0.0 \ | 0.0 | 0.0 | 0.0 | | 2000-01-03 | nan nan | nan nan nan nan | nan | nan | 0.0 \ | 0.0 | 0.0 | 0.0 | <BLANKLINE> ... test() | date | inputs | outputs | in1 | in2 | out1 \ | out2 | out3 | out4 | -----------------------------------------------------------------------\ ---------------------- | 2000-01-01 | 1.0 4.0 | 1.0 4.0 1.0 1.0 | 1.0 | 4.0 | 0.0 \ | 0.0 | 0.0 | 0.0 | | 2000-01-02 | 2.0 nan | 2.0 2.0 2.0 2.0 | 2.0 | nan | 0.0 \ | 0.0 | 0.0 | 0.0 | | 2000-01-03 | nan nan | nan nan nan nan | nan | nan | 0.0 \ | 0.0 | 0.0 | 0.0 | <BLANKLINE> """ module = importlib.import_module(f"hydpy.models.{applicationmodel}") docstring: str = module.__doc__ stringio = io.StringIO with stringio() as resultfile, contextlib.redirect_stdout(resultfile): module.tester.perform_tests() result = resultfile.getvalue() oldlines, newlines = [], [] expected, got = False, False nmb_replacements = 0 for line in result.split("\n"): line = line.strip() if line == "Expected:": expected = True elif line == "Got:": expected = False got = True elif got and ("***********************************" in line): expected = False got = False if oldlines or newlines: nmb_replacements += 1 docstring = docstring.replace( "\n".join(oldlines), "\n".join(newlines), ) docstring = docstring.replace( "\n".join(f" {line}" for line in oldlines), "\n".join(f" {line}" for line in newlines), ) oldlines, newlines = [], [] elif expected: oldlines.append(line) elif got: newlines.append(line) with open(resultfilepath, "w", encoding="utf-8") as resultfile: resultfile.write(f"Number of replacements: {nmb_replacements}\n\n") resultfile.write(docstring)
def _enumerate(variables: Iterable[Type[typingtools.VariableProtocol]]) -> str: return objecttools.enumeration( v.__name__ for v in variabletools.sort_variables(variables) )
[docs] def check_methodorder(model: modeltools.Model, indent: int = 0) -> str: """Check that *HydPy* calls the methods of the given application model in the correct order for each simulation step. The purpose of this function is to help model developers ensure that each method uses only the values of those sequences that have been calculated by other methods beforehand. *HydPy's* test routines apply |check_methodorder| automatically on each available application model. Alternatively, you can also execute it at the end of the docstring of an individual application model "manually", which suppresses the automatic execution and allows to check and discuss exceptional cases where |check_methodorder| generates false alarms. Function |check_methodorder| relies on the class constants `REQUIREDSEQUENCES`, `UPDATEDSEQUENCES`, and `RESULTSEQUENCES` of all relevant |Method| subclasses. Hence, the correctness of its results depends on the correctness of these tuples. However, even if those tuples are well-defined, one cannot expect |check_methodorder| to catch all kinds of order-related errors. For example, consider the case where one method calculates only some values of a multi-dimensional sequence and another method the remaining ones. |check_methodorder| would not report anything when a third method, relying on the completeness of the sequence's values, were called after the first but before the second method. We use the quite complex model |lland_v3| as an example. |check_methodorder| does not report any problems: >>> from hydpy.core.testtools import check_methodorder >>> from hydpy.models.lland_v3 import Model >>> print(check_methodorder(Model)) <BLANKLINE> To show how |check_methodorder| reports errors, we modify the `RESULTSEQUENCES` tuples of methods |lland_model.Calc_TKor_V1|, |lland_model.Calc_DryAirPressure_V1|, and |lland_model.Calc_QA_V1|: >>> from hydpy.models.lland.lland_model import ( ... Calc_TKor_V1, Calc_DryAirPressure_V1, Calc_QA_V1) >>> results_tkor = Calc_TKor_V1.RESULTSEQUENCES >>> results_dryairpressure = Calc_DryAirPressure_V1.RESULTSEQUENCES >>> results_qa = Calc_QA_V1.RESULTSEQUENCES >>> Calc_TKor_V1.RESULTSEQUENCES = () >>> Calc_DryAirPressure_V1.RESULTSEQUENCES = () >>> Calc_QA_V1.RESULTSEQUENCES += results_tkor Now, none of the relevant models calculates the value of sequence |lland_fluxes.DryAirPressure|. For |lland_fluxes.TKor|, there is still a method (|lland_model.Calc_QA_V1|) calculating its values, but at a too-late stage of the simulation step: >>> print(check_methodorder(Model)) # doctest: +ELLIPSIS Method Calc_SaturationVapourPressure_V1 requires the following \ sequences, which are not among the result sequences of any of its \ predecessors: TKor ... Method Calc_DensityAir_V1 requires the following sequences, \ which are not among the result sequences of any of its predecessors: \ TKor and DryAirPressure ... Method Calc_EvB_V2 requires the following sequences, \ which are not among the result sequences of any of its predecessors: TKor To tidy up, we need to revert the above changes: >>> Calc_TKor_V1.RESULTSEQUENCES = results_tkor >>> Calc_DryAirPressure_V1.RESULTSEQUENCES = results_dryairpressure >>> Calc_QA_V1.RESULTSEQUENCES = results_qa >>> print(check_methodorder(Model)) <BLANKLINE> """ blanks = " " * indent results: List[str] = [] excluded = ( sequencetools.InputSequence, sequencetools.InletSequence, sequencetools.ReceiverSequence, sequencetools.StateSequence, sequencetools.LogSequence, ) methods = tuple(model.get_methods()) for idx, method1 in enumerate(methods): required = set( seq for seq in method1.REQUIREDSEQUENCES if not issubclass(seq, excluded) ) for method0 in methods[:idx]: for seq in itertools.chain( method0.RESULTSEQUENCES, method0.UPDATEDSEQUENCES, ): if seq in required: required.remove(seq) if required: results.append( f"{blanks}Method {method1.__name__} requires the following " f"sequences, which are not among the result sequences of any " f"of its predecessors: {_enumerate(required)}" ) return "\n".join(results)
[docs] def check_selectedvariables(method: modeltools.Method, indent: int = 0) -> str: """Perform consistency checks regarding the |Parameter| and |Sequence_| subclasses selected by the given |Method| subclass. The purpose of this function is to help model developers ensure that the class tuples `CONTROLPARAMETERS`, `DERIVEDPARAMETERS`, `FIXEDPARAMETERS`, `SOLVERPARAMETERS`, `REQUIREDSEQUENCES`, `UPDATEDSEQUENCES`, and `RESULTSEQUENCES` contain the correct parameter and sequence subclasses. *HydPy's* test routines apply |check_selectedvariables| automatically on each method of each available application model. Alternatively, you can also execute it at the end of the docstring of an individual |Method| subclass "manually", which suppresses the automatic execution and allows to check and discuss exceptional cases where |check_selectedvariables| generates false alarms. Do not expect |check_selectedvariables| to catch all possible errors. Also, false positives might occur. However, in our experience, function |check_selectedvariables| is of great help to prevent the most common mistakes when defining the parameter and sequence classes relevant for a specific method. As an example, we select method |lland_model.Calc_WindSpeed2m_V1| of base model |lland|. |check_selectedvariables| does not reportany problems: >>> from hydpy.core.testtools import check_selectedvariables >>> from hydpy.models.lland.lland_model import ( ... Calc_WindSpeed2m_V1, Return_AdjustedWindSpeed_V1) >>> print(check_selectedvariables(Calc_WindSpeed2m_V1)) <BLANKLINE> To show how |check_selectedvariables| reports errors, we clear the `RESULTSEQUENCES` tuple of method |lland_model.Calc_WindSpeed2m_V1|. Now |check_selectedvariables| realises the usage of the flux sequence object `windspeed2m` within the source code of method |lland_model.Calc_WindSpeed2m_V1|, which is neither available within the `REQUIREDSEQUENCES`, the `UPDATEDSEQUENCES`, nor the`RESULTSEQUENCES` tuple: >>> resultseqs = Calc_WindSpeed2m_V1.RESULTSEQUENCES >>> Calc_WindSpeed2m_V1.RESULTSEQUENCES = () >>> print(check_selectedvariables(Calc_WindSpeed2m_V1)) Definitely missing: windspeed2m After putting the wrong flux sequence class |lland_fluxes.WindSpeed10m| into the tuple, we get an additional warning pointing to our mistake: >>> from hydpy.models.lland.lland_fluxes import WindSpeed10m >>> Calc_WindSpeed2m_V1.RESULTSEQUENCES = WindSpeed10m, >>> print(check_selectedvariables(Calc_WindSpeed2m_V1)) Definitely missing: windspeed2m Possibly erroneously selected (RESULTSEQUENCES): WindSpeed10m Method |lland_model.Calc_WindSpeed2m_V1| uses |lland_model.Return_AdjustedWindSpeed_V1| as a submethod. Hence, |lland_model.Calc_WindSpeed2m_V1| most likely needs to select each variable selected by |lland_model.Return_AdjustedWindSpeed_V1|. After adding additional variables to the `DERIVEDPARAMETERS` tuple of |lland_model.Return_AdjustedWindSpeed_V1|, we get another warning message: >>> from hydpy.models.lland.lland_derived import ( ... Days, Hours, Seconds) >>> derivedpars = Return_AdjustedWindSpeed_V1.DERIVEDPARAMETERS >>> Return_AdjustedWindSpeed_V1.DERIVEDPARAMETERS = Days, Hours, Seconds >>> print(check_selectedvariables(Calc_WindSpeed2m_V1)) Definitely missing: windspeed2m Possibly missing (DERIVEDPARAMETERS): Return_AdjustedWindSpeed_V1: Seconds, Hours, and Days Possibly erroneously selected (RESULTSEQUENCES): WindSpeed10m Finally, |check_selectedvariables| checks for duplicates both within and between the different tuples: >>> from hydpy.models.lland.lland_inputs import WindSpeed, TemL >>> requiredseqs = Calc_WindSpeed2m_V1.REQUIREDSEQUENCES >>> Calc_WindSpeed2m_V1.REQUIREDSEQUENCES = WindSpeed, WindSpeed, TemL >>> Calc_WindSpeed2m_V1.UPDATEDSEQUENCES = TemL, >>> print(check_selectedvariables(Calc_WindSpeed2m_V1)) Definitely missing: windspeed2m Possibly missing (DERIVEDPARAMETERS): Return_AdjustedWindSpeed_V1: Seconds, Hours, and Days Possibly erroneously selected (REQUIREDSEQUENCES): TemL Possibly erroneously selected (UPDATEDSEQUENCES): TemL Possibly erroneously selected (RESULTSEQUENCES): WindSpeed10m Duplicates: TemL and WindSpeed To tidy up, we need to revert the above changes: >>> Calc_WindSpeed2m_V1.RESULTSEQUENCES = resultseqs >>> Return_AdjustedWindSpeed_V1.DERIVEDPARAMETERS = derivedpars >>> Calc_WindSpeed2m_V1.REQUIREDSEQUENCES = requiredseqs >>> Calc_WindSpeed2m_V1.UPDATEDSEQUENCES = () >>> print(check_selectedvariables(Calc_WindSpeed2m_V1)) <BLANKLINE> Some methods such as |arma_model.Pick_Q_V1| of base model |arma| rely on the `len` attribute of 1-dimensional sequences. Function |check_selectedvariables| does not report false alarms in such cases: >>> from hydpy.models.arma.arma_model import Pick_Q_V1 >>> print(check_selectedvariables(Pick_Q_V1)) <BLANKLINE> Some methods such as |lland_model.Update_ESnow_V1| of base model |lland| update a sequence (meaning, they require its old value and calculate a new one), but their submethods (in this case |lland_model.Return_BackwardEulerError_V1|) just require them as input. Function |check_selectedvariables| does not report false alarms in such cases: >>> from hydpy.models.lland.lland_model import Update_ESnow_V1 >>> print(check_selectedvariables(Update_ESnow_V1)) <BLANKLINE> """ prefixes = ( "con", "der", "fix", "sol", "inp", "fac", "flu", "sta", "old", "new", "log", "aid", "inl", "out", "rec", "sen", ) groups = ( "CONTROLPARAMETERS", "DERIVEDPARAMETERS", "FIXEDPARAMETERS", "SOLVERPARAMETERS", "REQUIREDSEQUENCES", "UPDATEDSEQUENCES", "RESULTSEQUENCES", ) blanks = " " * indent results: List[str] = [] # search for variables that are used in the source code but not among the selected # variables: source = inspect.getsource(method.__call__) varnames_source: Set[str] = set() unbound_vars: AbstractSet[str] = inspect.getclosurevars(method.__call__).unbound for varname, prefix in itertools.product(unbound_vars, prefixes): if f"{prefix}.{varname}" in source: if varname.startswith("len_"): varname = varname[4:] varnames_source.add(varname) varnames_selected: Set[str] = set() for group in groups: varnames_selected.update(g.__name__.lower() for g in getattr(method, group)) varnames_diff: List[str] = sorted(varnames_source - varnames_selected) if varnames_diff: results.append( f"{blanks}Definitely missing: {objecttools.enumeration(varnames_diff)}" ) # search for variables selected by at least one submethod but not by the method # calling these submethods: vars_method: Set[Type[typingtools.VariableProtocol]] vars_submethods: Set[Type[typingtools.VariableProtocol]] for group in groups: vars_method = set(getattr(method, group)) found_problem = False for submethod in method.SUBMETHODS: vars_submethods = set(getattr(submethod, group)) if group == "REQUIREDSEQUENCES": vars_method.update( set(method.UPDATEDSEQUENCES).intersection( submethod.REQUIREDSEQUENCES ) ) diff = vars_submethods - vars_method if diff: if not found_problem: found_problem = True results.append(f"{blanks}Possibly missing ({group}):") results.append(f"{blanks} {submethod.__name__}: {_enumerate(diff)}") # search for selected variables that are neither used within the source code nor # selected by any submethod: group2vars_method: Dict[str, Set[Type[typingtools.VariableProtocol]]] = { g: set(getattr(method, g)) for g in groups } group2vars_submethods: Dict[str, Set[Type[typingtools.VariableProtocol]]] = { g: set() for g in groups } for submethod in method.SUBMETHODS: for group, vars_submethods in group2vars_submethods.items(): vars_submethods.update(getattr(submethod, group)) for group, vars_method in group2vars_method.items(): vars_submethods = group2vars_submethods[group] diff_ = [ method for method in vars_method - vars_submethods if method.__name__.lower() not in varnames_source ] if diff_: results.append( f"{blanks}Possibly erroneously selected ({group}): " f"{_enumerate(diff_)}" ) # search for variables that are selected multiple times: vars1: Tuple[Type[typingtools.VariableProtocol], ...] vars2: Tuple[Type[typingtools.VariableProtocol], ...] dupl: Set[Type[typingtools.VariableProtocol]] = set() for group1 in groups: vars1 = getattr(method, group1) for var in vars1: if vars1.count(var) > 1: dupl.add(var) for group2 in groups: if group1 is not group2: vars2 = getattr(method, group2) dupl.update(set(vars1).intersection(vars2)) if dupl: results.append(f"{blanks}Duplicates: {_enumerate(dupl)}") return "\n".join(results)
[docs] def perform_consistencychecks( applicationmodel=Union[types.ModuleType, str], indent: int = 0 ) -> str: """Perform all available consistency checks for the given application model. At the moment, function |perform_consistencychecks| calls function |check_selectedvariables| for each relevant model method and function |check_methodorder| for the application model itself. Note that |perform_consistencychecks| executes only those checks not already executed in the doctest of the respective method or model. This alternative allows model developers to perform the tests themselves whenever exceptional cases result in misleading error reports and discuss any related potential pitfalls in the official documentation. As an example, we apply |perform_consistencychecks| on the application model |lland_v3|. It does not report any potential problems (not already discussed in the documentation on the individual model methods): >>> from hydpy.core.testtools import perform_consistencychecks >>> print(perform_consistencychecks("lland_v3")) <BLANKLINE> To show how |perform_consistencychecks| reports errors, we modify the `RESULTSEQUENCES` tuple of method |lland_model.Calc_DryAirPressure_V1|: >>> from hydpy.models.lland.lland_model import ( ... Calc_DryAirPressure_V1) >>> results_dryairpressure = Calc_DryAirPressure_V1.RESULTSEQUENCES >>> Calc_DryAirPressure_V1.RESULTSEQUENCES = () >>> print(perform_consistencychecks("lland_v3")) Potential consistency problems for individual methods: Method Calc_DryAirPressure_V1: Definitely missing: dryairpressure Potential consistency problems between methods: Method Calc_DensityAir_V1 requires the following sequences, which are \ not among the result sequences of any of its predecessors: DryAirPressure To tidy up, we need to revert the above changes: >>> Calc_DryAirPressure_V1.RESULTSEQUENCES = results_dryairpressure >>> print(perform_consistencychecks("lland_v3")) <BLANKLINE> """ blanks = " " * indent model = importtools.prepare_model(applicationmodel) results: List[str] = [] method2errors: Dict[str, str] = {} for method in model.get_methods(): if "check_selectedvariables(" not in method.__doc__: subresult = check_selectedvariables( method=method, indent=indent + 8, ) if subresult: method2errors[method.__name__] = subresult if method2errors: results.append( f"{blanks}Potential consistency problems for individual methods:" ) for method, errors in method2errors.items(): results.append(f"{blanks} Method {method}:") results.append(errors) if "check_methodorder(" not in model.__doc__: subresult = check_methodorder(model, indent + 4) if subresult: results.append(f"{blanks}Potential consistency problems between methods:") results.append(subresult) return "\n".join(results)
[docs] def save_autofig( filename: str, figure: Optional["pyplot.Figure"] = None, ) -> None: """Save a figure automatically generated during testing in the special `autofig` sub-package so that Sphinx can include it into the documentation later. When passing no figure, function |save_autofig| takes the currently active one. """ filepath = f"{autofigs.__path__[0]}/{filename}" if figure: figure.savefig(filepath) figure.clear() else: pyplot.savefig(filepath) pyplot.close()
[docs] @contextlib.contextmanager def warn_later() -> Iterator[None]: """Suppress warnings and print them upon exit. The context manager |warn_later| helps demonstrate functionalities in doctests that emit warnings: >>> import warnings >>> def get_number(): ... warnings.warn("This is a warning.") ... return 1 >>> get_number() Traceback (most recent call last): ... UserWarning: This is a warning. >>> from hydpy.core.testtools import warn_later >>> with warn_later(): ... get_number() 1 UserWarning: This is a warning. """ with warnings.catch_warnings(record=True) as records: warnings.resetwarnings() yield for record in records: print(record.category.__name__, record.message, sep=": ")