Source code for hydpy.models.meteo.meteo_model

# -*- coding: utf-8 -*-
"""
.. _`solar time`: https://en.wikipedia.org/wiki/Solar_time
"""
# imports...
# ...from HydPy
from hydpy.core import modeltools
from hydpy.cythons import modelutils
from hydpy.models.meteo import meteo_fixed
from hydpy.models.meteo import meteo_control
from hydpy.models.meteo import meteo_derived
from hydpy.models.meteo import meteo_inputs
from hydpy.models.meteo import meteo_factors
from hydpy.models.meteo import meteo_fluxes
from hydpy.models.meteo import meteo_logs


[docs] class Calc_EarthSunDistance_V1(modeltools.Method): r"""Calculate the relative inverse distance between the earth and the sun according to :cite:t:`ref-Allen1998`. Basic equation (:cite:t:`ref-Allen1998`, equation 23): :math:`EarthSunDistance = 1 + 0.033 \cdot cos(2 \cdot Pi / 366 \cdot (DOY + 1)` Note that this equation differs slightly from the one given by :cite:t:`ref-Allen1998`. The following examples show that |Calc_EarthSunDistance_V1| calculates the same distance value for a specific "day" (e.g. the 1st March) both for leap years and non-leap years. Hence, there is a tiny "jump" between 28th February and 1st March for non-leap years. Examples: We define an initialisation period covering both a leap year (2000) and a non-leap year (2001): >>> from hydpy.models.meteo import * >>> parameterstep() >>> from hydpy import pub, round_ >>> pub.timegrids = "2000-01-01", "2002-01-01", "1d" >>> derived.doy.update() The following convenience function applies method |Calc_EarthSunDistance_V1| for the given dates and prints the results: >>> def test(*dates): ... for date in dates: ... model.idx_sim = pub.timegrids.init[date] ... model.calc_earthsundistance_v1() ... print(date, end=": ") ... round_(factors.earthsundistance.value) The results are identical for both years: >>> test("2000-01-01", "2000-02-28", "2000-02-29", ... "2000-03-01", "2000-07-01", "2000-12-31") 2000-01-01: 1.032995 2000-02-28: 1.017471 2000-02-29: 1.016988 2000-03-01: 1.0165 2000-07-01: 0.967 2000-12-31: 1.033 >>> test("2001-01-01", "2001-02-28", ... "2001-03-01", "2001-07-01", "2001-12-31") 2001-01-01: 1.032995 2001-02-28: 1.017471 2001-03-01: 1.0165 2001-07-01: 0.967 2001-12-31: 1.033 The following calculation agrees with example 8 of :cite:t:`ref-Allen1998`: >>> derived.doy(246) >>> model.idx_sim = 0 >>> model.calc_earthsundistance_v1() >>> factors.earthsundistance earthsundistance(0.984993) .. testsetup:: >>> del pub.timegrids """ FIXEDPARAMETERS = (meteo_fixed.Pi,) DERIVEDPARAMETERS = (meteo_derived.DOY,) RESULTSEQUENCES = (meteo_factors.EarthSunDistance,) @staticmethod def __call__(model: modeltools.Model) -> None: fix = model.parameters.fixed.fastaccess der = model.parameters.derived.fastaccess fac = model.sequences.factors.fastaccess fac.earthsundistance = 1.0 + 0.033 * modelutils.cos( 2 * fix.pi / 366.0 * (der.doy[model.idx_sim] + 1) )
[docs] class Calc_SolarDeclination_V1(modeltools.Method): r"""Calculate the solar declination according to :cite:t:`ref-Allen1998`. Basic equation (:cite:t:`ref-Allen1998`, equation 24): :math:`SolarDeclination = 0.409 \cdot sin(2 \cdot Pi / 366 \cdot (DOY + 1) - 1.39)` Note that this equation differs slightly from the one given by :cite:t:`ref-Allen1998` due to reasons explained in the documentation on method |Calc_EarthSunDistance_V1|. Examples: We define an initialisation period covering both a leap year (2000) and a non-leap year (2001): >>> from hydpy.models.meteo import * >>> parameterstep() >>> from hydpy import pub, round_ >>> pub.timegrids = "2000-01-01", "2002-01-01", "1d" >>> derived.doy.update() The following convenience function applies method |Calc_SolarDeclination_V1| for the given dates and prints the results: >>> def test(*dates): ... for date in dates: ... model.idx_sim = pub.timegrids.init[date] ... model.calc_solardeclination_v1() ... print(date, end=": ") ... round_(factors.solardeclination.value) The results are identical for both years: >>> test("2000-01-01", "2000-02-28", "2000-02-29", ... "2000-03-01", "2000-12-31") 2000-01-01: -0.401012 2000-02-28: -0.150618 2000-02-29: -0.144069 2000-03-01: -0.137476 2000-12-31: -0.402334 >>> test("2001-01-01", "2001-02-28", ... "2001-03-01", "2001-12-31") 2001-01-01: -0.401012 2001-02-28: -0.150618 2001-03-01: -0.137476 2001-12-31: -0.402334 The following calculation agrees with example 8 of :cite:t:`ref-Allen1998`: >>> derived.doy(246) >>> model.idx_sim = 0 >>> model.calc_solardeclination_v1() >>> factors.solardeclination solardeclination(0.117464) .. testsetup:: >>> del pub.timegrids """ FIXEDPARAMETERS = (meteo_fixed.Pi,) DERIVEDPARAMETERS = (meteo_derived.DOY,) RESULTSEQUENCES = (meteo_factors.SolarDeclination,) @staticmethod def __call__(model: modeltools.Model) -> None: fix = model.parameters.fixed.fastaccess der = model.parameters.derived.fastaccess fac = model.sequences.factors.fastaccess fac.solardeclination = 0.409 * modelutils.sin( 2 * fix.pi / 366 * (der.doy[model.idx_sim] + 1) - 1.39 )
[docs] class Calc_SolarDeclination_V2(modeltools.Method): r"""Calculate the solar declination according to :cite:t:`ref-LARSIM`. Basic equation: :math:`SolarDeclination = 0.41 \cdot cos \left( \frac{2 \cdot Pi \cdot (DOY - 171)}{365} \right)` Examples: We define an initialisation period covering both a leap year (2000) and a non-leap year (2001): >>> from hydpy.models.meteo import * >>> parameterstep() >>> from hydpy import pub, round_ >>> pub.timegrids = "2000-01-01", "2002-01-01", "1d" >>> derived.doy.update() The following convenience function applies method |Calc_SolarDeclination_V2| for the given dates and prints the results: >>> def test(*dates): ... for date in dates: ... model.idx_sim = pub.timegrids.init[date] ... model.calc_solardeclination_v2() ... print(date, end=": ") ... round_(factors.solardeclination.value) The results are identical for both years: >>> test("2000-01-01", "2000-02-28", "2000-02-29", ... "2000-03-01", "2000-12-31") 2000-01-01: -0.401992 2000-02-28: -0.149946 2000-02-29: -0.143355 2000-03-01: -0.136722 2000-12-31: -0.401992 >>> test("2001-01-01", "2001-02-28", ... "2001-03-01", "2001-12-31") 2001-01-01: -0.401992 2001-02-28: -0.149946 2001-03-01: -0.136722 2001-12-31: -0.401992 .. testsetup:: >>> del pub.timegrids """ DERIVEDPARAMETERS = (meteo_derived.DOY,) FIXEDPARAMETERS = (meteo_fixed.Pi,) RESULTSEQUENCES = (meteo_factors.SolarDeclination,) @staticmethod def __call__(model: modeltools.Model) -> None: der = model.parameters.derived.fastaccess fix = model.parameters.fixed.fastaccess fac = model.sequences.factors.fastaccess fac.solardeclination = 0.41 * modelutils.cos( 2.0 * fix.pi * (der.doy[model.idx_sim] - 171.0) / 365.0 )
[docs] class Calc_SunsetHourAngle_V1(modeltools.Method): r"""Calculate the sunset hour angle according to :cite:t:`ref-Allen1998`. Basic equation (:cite:t:`ref-Allen1998`, equation 25): :math:`SunsetHourAngle = arccos(-tan(LatitudeRad) \cdot tan(SolarDeclination))` Example: The following calculation agrees with example 8 of :cite:t:`ref-Allen1998`: >>> from hydpy.models.meteo import * >>> parameterstep() >>> derived.doy.shape = 1 >>> derived.doy(246) >>> derived.latituderad(-.35) >>> factors.solardeclination = 0.12 >>> model.calc_sunsethourangle_v1() >>> factors.sunsethourangle sunsethourangle(1.526767) """ DERIVEDPARAMETERS = (meteo_derived.LatitudeRad,) REQUIREDSEQUENCES = (meteo_factors.SolarDeclination,) RESULTSEQUENCES = (meteo_factors.SunsetHourAngle,) @staticmethod def __call__(model: modeltools.Model) -> None: der = model.parameters.derived.fastaccess fac = model.sequences.factors.fastaccess fac.sunsethourangle = modelutils.acos( -modelutils.tan(der.latituderad) * modelutils.tan(fac.solardeclination) )
[docs] class Calc_SolarTimeAngle_V1(modeltools.Method): r"""Calculate the solar time angle at the midpoint of the current period according to :cite:t:`ref-Allen1998`. Basic equations (:cite:t:`ref-Allen1998`, equations 31 to 33): :math:`SolarTimeAngle = Pi / 12 \cdot ((SCT + (Longitude - UTCLongitude) / 15 + S_c) - 12)` :math:`S_c = 0.1645 \cdot sin(2 \cdot b) - 0.1255 \cdot cos(b) - 0.025 \cdot sin(b)` :math:`b = (2 \cdot Pi \cdot (DOY - 80)) / 365` Note there are two slight deviations from the equations given by :cite:t:`ref-Allen1998`. The first one is that positive numbers correspond to longitudes east of Greenwich and negative numbers to longitudes west of Greenwich. The second one is due to the definition of parameter |DOY|, as explained in the documentation on method |Calc_EarthSunDistance_V1|. Examples: >>> from hydpy import pub, round_ >>> pub.timegrids = "2000-09-03", "2000-09-04", "1h" >>> from hydpy.models.meteo import * >>> parameterstep() >>> longitude(15) >>> derived.doy.update() >>> derived.sct.update() >>> derived.utclongitude.update() >>> for hour in range(24): ... model.idx_sim = hour ... model.calc_solartimeangle_v1() ... print(hour, end=": ") ... round_(factors.solartimeangle.value) # doctest: +ELLIPSIS 0: -3.004157 1: -2.742358 ... 11: -0.124364 12: 0.137435 ... 22: 2.755429 23: 3.017229 .. testsetup:: >>> del pub.timegrids """ FIXEDPARAMETERS = (meteo_fixed.Pi,) CONTROLPARAMETERS = (meteo_control.Longitude,) DERIVEDPARAMETERS = ( meteo_derived.DOY, meteo_derived.SCT, meteo_derived.UTCLongitude, ) RESULTSEQUENCES = (meteo_factors.SolarTimeAngle,) @staticmethod def __call__(model: modeltools.Model) -> None: fix = model.parameters.fixed.fastaccess con = model.parameters.control.fastaccess der = model.parameters.derived.fastaccess fac = model.sequences.factors.fastaccess d_b = 2.0 * fix.pi * (der.doy[model.idx_sim] - 80.0) / 365.0 d_sc = ( 0.1645 * modelutils.sin(2.0 * d_b) - 0.1255 * modelutils.cos(d_b) - 0.025 * modelutils.sin(d_b) ) d_time = ( der.sct[model.idx_sim] + (con.longitude - der.utclongitude) / 15.0 + d_sc ) fac.solartimeangle = fix.pi / 12.0 * (d_time - 12.0)
[docs] class Calc_TimeOfSunrise_TimeOfSunset_V1(modeltools.Method): r"""Calculate the time of sunrise and sunset of the current day according to :cite:t:`ref-LARSIM`, based on :cite:t:`ref-Thompson1981`. Basic equations: :math:`TimeOfSunset^* = \frac{12}{Pi} \cdot acos \left( tan(SolarDeclination) \cdot tan(LatitudeRad) + \frac{0.0145}{cos(SolarDeclination) \cdot cos(LatitudeRad)} \right)` :math:`\delta = \frac{4 \cdot (UTCLongitude - Longitude)}{60}` :math:`TimeOfSunset = TimeOfSunset^* + \delta` :math:`TimeOfSunset = 24 - TimeOfSunset^* + \delta` Examples: We calculate the local time of sunrise and sunset for a latitude of approximately 52°N and a longitude of 10°E, which is 5° west of the longitude that defines the local time zone: >>> from hydpy.models.meteo import * >>> parameterstep() >>> longitude(10.0) >>> derived.utclongitude(15.0) >>> derived.latituderad(0.9) The sunshine duration varies between seven hours at the winter solstice and 16 hours at the summer solstice: >>> factors.solardeclination = -0.41 >>> model.calc_timeofsunrise_timeofsunset_v1() >>> factors.timeofsunrise timeofsunrise(8.432308) >>> factors.timeofsunset timeofsunset(16.234359) >>> factors.solardeclination = 0.41 >>> model.calc_timeofsunrise_timeofsunset_v1() >>> factors.timeofsunrise timeofsunrise(4.002041) >>> factors.timeofsunset timeofsunset(20.664625) """ CONTROLPARAMETERS = (meteo_control.Longitude,) DERIVEDPARAMETERS = ( meteo_derived.LatitudeRad, meteo_derived.UTCLongitude, ) FIXEDPARAMETERS = (meteo_fixed.Pi,) REQUIREDSEQUENCES = (meteo_factors.SolarDeclination,) RESULTSEQUENCES = ( meteo_factors.TimeOfSunrise, meteo_factors.TimeOfSunset, ) @staticmethod def __call__(model: modeltools.Model) -> None: con = model.parameters.control.fastaccess der = model.parameters.derived.fastaccess fix = model.parameters.fixed.fastaccess fac = model.sequences.factors.fastaccess fac.timeofsunrise = (12.0 / fix.pi) * modelutils.acos( modelutils.tan(fac.solardeclination) * modelutils.tan(der.latituderad) + 0.0145 / modelutils.cos(fac.solardeclination) / modelutils.cos(der.latituderad) ) fac.timeofsunset = 24.0 - fac.timeofsunrise d_dt = (der.utclongitude - con.longitude) * 4.0 / 60.0 fac.timeofsunrise += d_dt fac.timeofsunset += d_dt
[docs] class Calc_ExtraterrestrialRadiation_V1(modeltools.Method): r"""Calculate the extraterrestrial radiation according to :cite:t:`ref-Allen1998`. Basic equation for daily simulation steps (:cite:t:`ref-Allen1998`, equation 21): :math:`ExternalTerrestrialRadiation = \frac{SolarConstant}{Pi} \cdot EarthSunDistance \cdot ( SunsetHourAngle \cdot sin(LatitudeRad) \cdot sin(SolarDeclination) + cos(LatitudeRad) \cdot cos(SolarDeclination) \cdot sin(SunsetHourAngle))` Basic equation for (sub)hourly steps (:cite:t:`ref-Allen1998`, eq. 28 to 30): :math:`ExternalTerrestrialRadiation = \frac{12 \cdot SolarConstant}{Pi} \cdot EarthSunDistance \cdot \Big( (\omega_2 - \omega_1) \cdot sin(LatitudeRad) \cdot sin(SolarDeclination) + cos(LatitudeRad) \cdot cos(SolarDeclination) \cdot (sin(\omega_2) - sin(\omega_1)) \Big)` :math:`\omega_1 = SolarTimeAngle - Pi \cdot Days` :math:`\omega_2 = SolarTimeAngle + Pi \cdot Days` Examples: The following calculation agrees with example 8 of :cite:t:`ref-Allen1998` for daily time steps: >>> from hydpy.models.meteo import * >>> parameterstep() >>> derived.days(1) >>> derived.latituderad(-0.35) >>> factors.earthsundistance = 0.985 >>> factors.solardeclination = 0.12 >>> factors.sunsethourangle = 1.527 >>> model.calc_extraterrestrialradiation_v1() >>> fluxes.extraterrestrialradiation extraterrestrialradiation(372.473355) The following calculation repeats the above example for an hourly simulation time step, still covering the whole day: >>> import numpy >>> longitude(-20) >>> derived.utclongitude(-20) >>> derived.days(1/24) >>> derived.doy.shape = 24 >>> derived.doy(246) >>> derived.sct.shape = 24 >>> derived.sct = numpy.linspace(0.5, 23.5, 24) >>> sum_ = 0.0 >>> from hydpy import round_ >>> for hour in range(24): ... model.idx_sim = hour ... model.calc_solartimeangle_v1() ... model.calc_extraterrestrialradiation_v1() ... print(hour, end=": ") ... round_(fluxes.extraterrestrialradiation.value) ... sum_ += fluxes.extraterrestrialradiation 0: 0.0 1: 0.0 2: 0.0 3: 0.0 4: 0.0 5: 0.0 6: 116.280258 7: 431.467206 8: 713.483659 9: 943.11066 10: 1104.699509 11: 1187.238194 12: 1185.101838 13: 1098.436032 14: 933.146907 15: 700.498642 16: 416.345834 17: 100.053027 18: 0.0 19: 0.0 20: 0.0 21: 0.0 22: 0.0 23: 0.0 Note that, even with identical values of the local longitude (|Longitude|) and the one of the time zone (|UTCLongitude|), the calculated radiation values are not symmetrical due to the eccentricity of the Earth"s orbit (see `solar time`_). There is a slight deviation between the directly calculated daily value and the mean of the hourly values: >>> round_(sum_/24) 372.077574 For sub-daily simulation time steps, results are most accurate for the shortest step size. On the other hand, they can be (extremely) inaccurate for timesteps between one hour and one day. We demonstrate this by comparing the mean sub-daily values of different step sizes with the directly calculated daily value (note the apparent total fail of method |Calc_ExtraterrestrialRadiation_V1| for a step size of 720 minutes): >>> for minutes in [1, 5, 15, 30, 60, 90, 120, 144, 160, ... 180, 240, 288, 360, 480, 720, 1440]: ... derived.days(minutes/60/24) ... nmb = int(1440/minutes) ... derived.doy.shape = nmb ... derived.doy(246) ... derived.sct.shape = nmb ... derived.sct = numpy.linspace(minutes/60/2, 24-minutes/60/2, nmb) ... sum_ = 0.0 ... for idx in range(nmb): ... model.idx_sim = idx ... model.calc_solartimeangle_v1() ... model.calc_extraterrestrialradiation_v1() ... sum_ += fluxes.extraterrestrialradiation ... print(minutes, end=": ") ... round_(sum_/24 - 372.473355) 1: -0.000626 5: -0.008549 15: -0.100092 30: -0.395781 60: -0.395781 90: -0.395781 120: -0.395781 144: -14.43193 160: -9.539017 180: -0.395781 240: -44.735212 288: -25.486399 360: -0.395781 480: -44.735212 720: -372.473355 1440: -356.953632 """ FIXEDPARAMETERS = ( meteo_fixed.Pi, meteo_fixed.SolarConstant, ) DERIVEDPARAMETERS = ( meteo_derived.Days, meteo_derived.LatitudeRad, ) REQUIREDSEQUENCES = ( meteo_factors.SolarTimeAngle, meteo_factors.EarthSunDistance, meteo_factors.SolarDeclination, meteo_factors.SunsetHourAngle, ) RESULTSEQUENCES = (meteo_fluxes.ExtraterrestrialRadiation,) @staticmethod def __call__(model: modeltools.Model) -> None: fix = model.parameters.fixed.fastaccess der = model.parameters.derived.fastaccess fac = model.sequences.factors.fastaccess flu = model.sequences.fluxes.fastaccess if der.days < 1.0: d_delta = fix.pi * der.days d_omega1 = fac.solartimeangle - d_delta d_omega2 = fac.solartimeangle + d_delta flu.extraterrestrialradiation = max( (12.0 * fix.solarconstant / fix.pi * fac.earthsundistance) * ( ( (d_omega2 - d_omega1) * modelutils.sin(der.latituderad) * modelutils.sin(fac.solardeclination) ) + ( modelutils.cos(der.latituderad) * modelutils.cos(fac.solardeclination) * (modelutils.sin(d_omega2) - modelutils.sin(d_omega1)) ) ), 0.0, ) else: flu.extraterrestrialradiation = ( fix.solarconstant / fix.pi * fac.earthsundistance ) * ( ( fac.sunsethourangle * modelutils.sin(der.latituderad) * modelutils.sin(fac.solardeclination) ) + ( modelutils.cos(der.latituderad) * modelutils.cos(fac.solardeclination) * modelutils.sin(fac.sunsethourangle) ) )
[docs] class Calc_ExtraterrestrialRadiation_V2(modeltools.Method): r"""Calculate the amount of extraterrestrial radiation according to :cite:t:`ref-LARSIM`, based on :cite:t:`ref-Thompson1981`. Basic equation: :math:`ExternalTerrestrialRadiation = \frac{SolarConstant \cdot EarthSunDistance \cdot ( SunsetHourAngle \cdot sin(LatitudeRad) \cdot sin(SolarDeclination) + cos(LatitudeRad) \cdot cos(SolarDeclination) \cdot sin(SunsetHourAngle) )}{PI}` :math:`SunsetHourAngle = (TimeOfSunset - TimeOfSunset) \cdot Pi / 24` Examples: First, we calculate the extraterrestrial radiation for a latitude of approximately 52°N: >>> from hydpy.models.meteo import * >>> parameterstep() >>> derived.latituderad(0.9) The sunshine duration varies between seven hours at the winter solstice and 16 hours at summer solstice, corresponding to mean daily radiations of 70 and 514 W/m². >>> factors.solardeclination = -0.41 >>> factors.earthsundistance = 0.97 >>> factors.timeofsunrise = 8.4 >>> factors.timeofsunset = 15.6 >>> model.calc_extraterrestrialradiation_v2() >>> fluxes.extraterrestrialradiation extraterrestrialradiation(70.458396) >>> factors.solardeclination = 0.41 >>> factors.earthsundistance = 1.03 >>> factors.timeofsunrise = 4.0 >>> factors.timeofsunset = 20.0 >>> model.calc_extraterrestrialradiation_v2() >>> fluxes.extraterrestrialradiation extraterrestrialradiation(514.367012) """ DERIVEDPARAMETERS = (meteo_derived.LatitudeRad,) FIXEDPARAMETERS = ( meteo_fixed.Pi, meteo_fixed.SolarConstant, ) REQUIREDSEQUENCES = ( meteo_factors.SolarDeclination, meteo_factors.EarthSunDistance, meteo_factors.TimeOfSunrise, meteo_factors.TimeOfSunset, ) RESULTSEQUENCES = (meteo_fluxes.ExtraterrestrialRadiation,) @staticmethod def __call__(model: modeltools.Model) -> None: der = model.parameters.derived.fastaccess fix = model.parameters.fixed.fastaccess fac = model.sequences.factors.fastaccess flu = model.sequences.fluxes.fastaccess d_sunsethourangle = (fac.timeofsunset - fac.timeofsunrise) * fix.pi / 24.0 flu.extraterrestrialradiation = ( fix.solarconstant * fac.earthsundistance / fix.pi ) * ( d_sunsethourangle * modelutils.sin(fac.solardeclination) * modelutils.sin(der.latituderad) + modelutils.cos(fac.solardeclination) * modelutils.cos(der.latituderad) * modelutils.sin(d_sunsethourangle) )
[docs] class Calc_PossibleSunshineDuration_V1(modeltools.Method): r"""Calculate the astronomically possible sunshine duration according to :cite:t:`ref-Allen1998`. Basic equation for daily timesteps :cite:t:`ref-Allen1998` (equation 34): :math:`PossibleSunshineDuration = 24 / Pi \cdot SunsetHourAngle` Basic equation for (sub)hourly timesteps: :math:`PossibleSunshineDuration = min(max(12 / Pi \cdot (SunsetHourAngle - \tau), 0), Hours)` .. math:: \tau = \begin{cases} -SolarTimeAngle - Pi \cdot Days &|\ SolarTimeAngle \leq 0 \\ SolarTimeAngle - Pi \cdot Days &|\ SolarTimeAngle > 0 \end{cases} Examples: The following calculation agrees with example 9 of :cite:t:`ref-Allen1998`: >>> from hydpy.models.meteo import * >>> parameterstep() >>> derived.days(1) >>> derived.hours(24) >>> factors.sunsethourangle(1.527) >>> model.calc_possiblesunshineduration_v1() >>> factors.possiblesunshineduration possiblesunshineduration(11.665421) The following calculation repeats the above example for an hourly simulation time step, still covering the whole day. Therefore the ratio is only calculated during sunrise and sunset and set to 1 at daytime and 0 at nighttime: >>> from hydpy import round_ >>> import numpy >>> derived.days(1/24) >>> derived.hours(1) >>> solartimeangles = numpy.linspace(-3.004157, 3.017229, 24) >>> sum_ = 0. >>> for hour, solartimeangle in enumerate(solartimeangles): ... factors.solartimeangle = solartimeangle ... model.calc_possiblesunshineduration_v1() ... print(hour, end=": ") # doctest: +ELLIPSIS ... round_(factors.possiblesunshineduration.value) ... sum_ += factors.possiblesunshineduration.value 0: 0.0 ... 5: 0.0 6: 0.857676 7: 1.0 ... 16: 1.0 17: 0.807745 18: 0.0 ... 23: 0.0 The sum of the hourly sunshine durations equals the one-step calculation result: >>> round_(sum_) 11.665421 """ FIXEDPARAMETERS = (meteo_fixed.Pi,) DERIVEDPARAMETERS = ( meteo_derived.Days, meteo_derived.Hours, ) REQUIREDSEQUENCES = ( meteo_factors.SolarTimeAngle, meteo_factors.SunsetHourAngle, ) RESULTSEQUENCES = (meteo_factors.PossibleSunshineDuration,) @staticmethod def __call__(model: modeltools.Model) -> None: fix = model.parameters.fixed.fastaccess der = model.parameters.derived.fastaccess fac = model.sequences.factors.fastaccess if der.hours < 24.0: if fac.solartimeangle <= 0.0: d_thresh = -fac.solartimeangle - fix.pi * der.days else: d_thresh = fac.solartimeangle - fix.pi * der.days fac.possiblesunshineduration = min( max(12.0 / fix.pi * (fac.sunsethourangle - d_thresh), 0.0), der.hours ) else: fac.possiblesunshineduration = 24.0 / fix.pi * fac.sunsethourangle
[docs] class Calc_PossibleSunshineDuration_V2(modeltools.Method): r"""Calculate the astronomically possible sunshine duration according to :cite:t:`ref-LARSIM`. Basic equation: :math:`PossibleSunshineDuration = max \bigl( max(SCT-Hours/2, TimeOfSunrise) - min(SCT + Hours / 2, TimeOfSunset), 0 \bigr)` Examples: We focus on winter conditions with a relatively short possible sunshine duration: >>> from hydpy.models.meteo import * >>> parameterstep() >>> factors.timeofsunrise(8.4) >>> factors.timeofsunset(15.6) We start with a daily simulation time step. The possible sunshine duration is, as expected, the span between sunrise and sunset: >>> from hydpy import pub, round_ >>> pub.timegrids = "2000-01-01", "2000-01-02", "1d" >>> derived.sct.update() >>> derived.hours.update() >>> model.calc_possiblesunshineduration_v2() >>> factors.possiblesunshineduration possiblesunshineduration(7.2) The following example calculates the possible hourly sunshine durations of the same day: >>> pub.timegrids = "2000-01-01", "2000-01-02", "1h" >>> derived.sct.update() >>> derived.hours.update() >>> sum_ = 0.0 >>> for idx in range(24): ... model.idx_sim = idx ... model.calc_possiblesunshineduration_v2() ... print(idx+1, end=": ") # doctest: +ELLIPSIS ... round_(factors.possiblesunshineduration.value) ... sum_ += factors.possiblesunshineduration.value 1: 0.0 ... 9: 0.6 10: 1.0 ... 15: 1.0 16: 0.6 17: 0.0 ... 24: 0.0 The sum of the possible hourly sunshine durations equals the daily possible sunshine, of course: >>> round_(sum_) 7.2 .. testsetup:: >>> del pub.timegrids """ DERIVEDPARAMETERS = ( meteo_derived.SCT, meteo_derived.Hours, ) REQUIREDSEQUENCES = ( meteo_factors.TimeOfSunrise, meteo_factors.TimeOfSunset, ) RESULTSEQUENCES = (meteo_factors.PossibleSunshineDuration,) @staticmethod def __call__(model: modeltools.Model) -> None: der = model.parameters.derived.fastaccess fac = model.sequences.factors.fastaccess d_stc = der.sct[model.idx_sim] d_t0 = max((d_stc - der.hours / 2.0), fac.timeofsunrise) d_t1 = min((d_stc + der.hours / 2.0), fac.timeofsunset) fac.possiblesunshineduration = max(d_t1 - d_t0, 0.0)
[docs] class Calc_DailyPossibleSunshineDuration_V1(modeltools.Method): """Calculate the astronomically possible daily sunshine duration. Basic equation: :math:`DailyPossibleSunshineDuration = TimeOfSunset - TimeOfSunrise` Examples: >>> from hydpy.models.meteo import * >>> parameterstep() >>> factors.timeofsunrise(8.4) >>> factors.timeofsunset(15.6) >>> model.calc_dailypossiblesunshineduration() >>> factors.dailypossiblesunshineduration dailypossiblesunshineduration(7.2) """ REQUIREDSEQUENCES = ( meteo_factors.TimeOfSunrise, meteo_factors.TimeOfSunset, ) RESULTSEQUENCES = (meteo_factors.DailyPossibleSunshineDuration,) @staticmethod def __call__(model: modeltools.Model) -> None: fac = model.sequences.factors.fastaccess fac.dailypossiblesunshineduration = fac.timeofsunset - fac.timeofsunrise
[docs] class Update_LoggedSunshineDuration_V1(modeltools.Method): """Log the sunshine duration values of the last 24 hours. Example: The following example shows that each new method call successively moves the three memorised values to the right and stores the respective new value on the most left position: >>> from hydpy.models.meteo import * >>> parameterstep() >>> derived.nmblogentries(3) >>> logs.loggedsunshineduration.shape = 3 >>> logs.loggedsunshineduration = 0.0 >>> from hydpy import UnitTest >>> test = UnitTest(model, ... model.update_loggedsunshineduration_v1, ... last_example=4, ... parseqs=(inputs.sunshineduration, ... logs.loggedsunshineduration)) >>> test.nexts.sunshineduration = 1.0, 3.0, 2.0, 4.0 >>> del test.inits.loggedsunshineduration >>> test() | ex. | sunshineduration | loggedsunshineduration | ------------------------------------------------------------- | 1 | 1.0 | 1.0 0.0 0.0 | | 2 | 3.0 | 3.0 1.0 0.0 | | 3 | 2.0 | 2.0 3.0 1.0 | | 4 | 4.0 | 4.0 2.0 3.0 | """ DERIVEDPARAMETERS = (meteo_derived.NmbLogEntries,) REQUIREDSEQUENCES = (meteo_inputs.SunshineDuration,) UPDATEDSEQUENCES = (meteo_logs.LoggedSunshineDuration,) @staticmethod def __call__(model: modeltools.Model) -> None: der = model.parameters.derived.fastaccess inp = model.sequences.inputs.fastaccess log = model.sequences.logs.fastaccess for idx in range(der.nmblogentries - 1, 0, -1): log.loggedsunshineduration[idx] = log.loggedsunshineduration[idx - 1] log.loggedsunshineduration[0] = inp.sunshineduration
[docs] class Update_LoggedGlobalRadiation_V1(modeltools.Method): """Log the global radiation values of the last 24 hours. Example: The following example shows that each new method call successively moves the three memorised values to the right and stores the respective new value on the most left position: >>> from hydpy.models.meteo import * >>> parameterstep() >>> derived.nmblogentries(3) >>> logs.loggedglobalradiation.shape = 3 >>> logs.loggedglobalradiation = 0.0 >>> from hydpy import UnitTest >>> test = UnitTest(model, ... model.update_loggedglobalradiation_v1, ... last_example=4, ... parseqs=(inputs.globalradiation, ... logs.loggedglobalradiation)) >>> test.nexts.globalradiation = 1.0, 3.0, 2.0, 4.0 >>> del test.inits.loggedglobalradiation >>> test() | ex. | globalradiation | loggedglobalradiation | ----------------------------------------------------------- | 1 | 1.0 | 1.0 0.0 0.0 | | 2 | 3.0 | 3.0 1.0 0.0 | | 3 | 2.0 | 2.0 3.0 1.0 | | 4 | 4.0 | 4.0 2.0 3.0 | """ DERIVEDPARAMETERS = (meteo_derived.NmbLogEntries,) REQUIREDSEQUENCES = (meteo_inputs.GlobalRadiation,) UPDATEDSEQUENCES = (meteo_logs.LoggedGlobalRadiation,) @staticmethod def __call__(model: modeltools.Model) -> None: der = model.parameters.derived.fastaccess inp = model.sequences.inputs.fastaccess log = model.sequences.logs.fastaccess for idx in range(der.nmblogentries - 1, 0, -1): log.loggedglobalradiation[idx] = log.loggedglobalradiation[idx - 1] log.loggedglobalradiation[0] = inp.globalradiation
[docs] class Calc_DailySunshineDuration_V1(modeltools.Method): """Calculate the sunshine duration sum of the last 24 hours. Example: >>> from hydpy.models.meteo import * >>> parameterstep() >>> derived.nmblogentries(3) >>> logs.loggedsunshineduration.shape = 3 >>> logs.loggedsunshineduration = 1.0, 5.0, 3.0 >>> model.calc_dailysunshineduration_v1() >>> factors.dailysunshineduration dailysunshineduration(9.0) """ DERIVEDPARAMETERS = (meteo_derived.NmbLogEntries,) REQUIREDSEQUENCES = (meteo_logs.LoggedSunshineDuration,) UPDATEDSEQUENCES = (meteo_factors.DailySunshineDuration,) @staticmethod def __call__(model: modeltools.Model) -> None: der = model.parameters.derived.fastaccess log = model.sequences.logs.fastaccess fac = model.sequences.factors.fastaccess fac.dailysunshineduration = 0.0 for idx in range(der.nmblogentries): fac.dailysunshineduration += log.loggedsunshineduration[idx]
[docs] class Calc_DailyGlobalRadiation_V2(modeltools.Method): """Calculate the global radiation sum of the last 24 hours. Example: >>> from hydpy.models.meteo import * >>> parameterstep() >>> derived.nmblogentries(3) >>> logs.loggedglobalradiation.shape = 3 >>> logs.loggedglobalradiation = 100.0, 800.0, 600.0 >>> model.calc_dailyglobalradiation_v2() >>> fluxes.dailyglobalradiation dailyglobalradiation(500.0) """ DERIVEDPARAMETERS = (meteo_derived.NmbLogEntries,) REQUIREDSEQUENCES = (meteo_logs.LoggedGlobalRadiation,) UPDATEDSEQUENCES = (meteo_fluxes.DailyGlobalRadiation,) @staticmethod def __call__(model: modeltools.Model) -> None: der = model.parameters.derived.fastaccess log = model.sequences.logs.fastaccess flu = model.sequences.fluxes.fastaccess flu.dailyglobalradiation = 0.0 for idx in range(der.nmblogentries): flu.dailyglobalradiation += log.loggedglobalradiation[idx] flu.dailyglobalradiation /= der.nmblogentries
[docs] class Calc_PortionDailyRadiation_V1(modeltools.Method): r"""Calculate the relative sum of radiation according to :cite:t:`ref-LARSIM-Hilfe`. Basic equations: .. math:: SP = S_P^*(SCT + Hours/2) - S_P^*(SCT - Hours/2) .. math:: S_P^*(t) = \begin{cases} 0 &|\ TL_P(t) \leq 0 \\ 50 - 50 \cdot cos\bigl(1.8 \cdot TL_P(t)\bigr) - 3.4 \cdot sin\bigl(3.6 \cdot TL_P(t)\bigr)^2 &|\ 0 < TL_P(t) \leq 50 \cdot \frac{2 \cdot Pi}{360} \\ 50 - 50 \cdot cos\bigl(1.8 \cdot TL_P(t)\bigr) + 3.4 \cdot sin\bigl(3.6 \cdot TL_P(t)\bigr)^2 &|\ 50 \cdot \frac{2 \cdot Pi}{360} < TL_P(t) < 100 \cdot \frac{2 \cdot Pi}{360} \\ 100 &|\ 100 \cdot \frac{2 \cdot Pi}{360} \leq TL_P(t) \end{cases} .. math:: TL_P(t) = 100 \cdot \frac{2 \cdot Pi}{360} \cdot \frac{t - TimeOfSunrise}{TimeOfSunset - TimeOfSunrise} Examples: We focus on winter conditions with a relatively short possible sunshine duration: >>> from hydpy.models.meteo import * >>> parameterstep() >>> factors.timeofsunrise(8.4) >>> factors.timeofsunset(15.6) We start with an hourly simulation time step. The relative radiation sum is, as expected, zero before sunrise and after sunset. In between, it reaches its maximum around noon: >>> from hydpy import pub, round_ >>> pub.timegrids = "2000-01-01", "2000-01-02", "1h" >>> derived.sct.update() >>> derived.hours.update() >>> for idx in range(7, 17): ... model.idx_sim = idx ... model.calc_portiondailyradiation_v1() ... print(idx+1, end=": ") ... round_(factors.portiondailyradiation.value) 8: 0.0 9: 0.853709 10: 7.546592 11: 18.473585 12: 23.126115 13: 23.126115 14: 18.473585 15: 7.546592 16: 0.853709 17: 0.0 The following examples show how method |Calc_PortionDailyRadiation_V1| works for time step sizes longer than one hour: >>> pub.timegrids = "2000-01-01", "2000-01-02", "1d" >>> derived.sct.update() >>> derived.hours.update() >>> model.idx_sim = 0 >>> model.calc_portiondailyradiation_v1() >>> factors.portiondailyradiation portiondailyradiation(100.0) >>> pub.timegrids = "2000-01-01", "2000-01-02", "6h" >>> derived.sct.update() >>> derived.hours.update() >>> for idx in range(4): ... model.idx_sim = idx ... model.calc_portiondailyradiation_v1() ... print((idx+1)*6, end=": ") ... round_(factors.portiondailyradiation.value) 6: 0.0 12: 50.0 18: 50.0 24: 0.0 >>> pub.timegrids = "2000-01-01", "2000-01-02", "3h" >>> derived.sct.update() >>> derived.hours.update() >>> for idx in range(8): ... model.idx_sim = idx ... model.calc_portiondailyradiation_v1() ... print((idx+1)*3, end=": ") ... round_(factors.portiondailyradiation.value) 3: 0.0 6: 0.0 9: 0.853709 12: 49.146291 15: 49.146291 18: 0.853709 21: 0.0 24: 0.0 Often, method |Calc_PortionDailyRadiation_V1| calculates a small but unrealistic "bump" around noon (for example, the relative radiation is slightly smaller between 11:30 and 12:00 than it is between 11:00 and 11:30): >>> pub.timegrids = "2000-01-01", "2000-01-02", "30m" >>> derived.sct.update() >>> derived.hours.update() >>> for idx in range(15, 33): ... model.idx_sim = idx ... model.calc_portiondailyradiation_v1() ... print((idx+1)/2, end=": ") ... round_(factors.portiondailyradiation.value) 8.0: 0.0 8.5: 0.021762 9.0: 0.831947 9.5: 2.514315 10.0: 5.032276 10.5: 7.989385 11.0: 10.4842 11.5: 11.696873 12.0: 11.429242 12.5: 11.429242 13.0: 11.696873 13.5: 10.4842 14.0: 7.989385 14.5: 5.032276 15.0: 2.514315 15.5: 0.831947 16.0: 0.021762 16.5: 0.0 .. testsetup:: >>> del pub.timegrids """ DERIVEDPARAMETERS = ( meteo_derived.SCT, meteo_derived.Hours, ) FIXEDPARAMETERS = (meteo_fixed.Pi,) REQUIREDSEQUENCES = ( meteo_factors.TimeOfSunrise, meteo_factors.TimeOfSunset, ) RESULTSEQUENCES = (meteo_factors.PortionDailyRadiation,) @staticmethod def __call__(model: modeltools.Model) -> None: der = model.parameters.derived.fastaccess fix = model.parameters.fixed.fastaccess fac = model.sequences.factors.fastaccess d_fac = 2.0 * fix.pi / 360.0 fac.portiondailyradiation = 0.0 for i in range(2): if i: d_dt = der.hours / 2.0 else: d_dt = -der.hours / 2.0 d_tlp = (100.0 * d_fac) * ( (der.sct[model.idx_sim] + d_dt - fac.timeofsunrise) / (fac.timeofsunset - fac.timeofsunrise) ) if d_tlp <= 0.0: d_p = 0.0 elif d_tlp < 100.0 * d_fac: d_p = 50.0 - 50.0 * modelutils.cos(1.8 * d_tlp) d_temp = 3.4 * modelutils.sin(3.6 * d_tlp) ** 2 if d_tlp <= 50.0 * d_fac: d_p -= d_temp else: d_p += d_temp else: d_p = 100.0 if i: fac.portiondailyradiation += d_p else: fac.portiondailyradiation -= d_p
[docs] class Return_DailyGlobalRadiation_V1(modeltools.Method): r"""Calculate and return the daily global radiation according to :cite:t:`ref-LARSIM`. Additional requirements: |Model.idx_sim| Basic equation: .. math:: ExtraterrestrialRadiation \cdot \begin{cases} AngstromConstant + AngstromFactor \cdot \frac{sunshineduration}{possiblesunshineduration} &|\ sunshineduration > 0 \;\; \lor \;\; Days < 1 \\ AngstromAlternative &|\ sunshineduration = 0 \;\; \land \;\; Days \geq 1 \end{cases} Example: You can define month-specific Angstrom coefficients to reflect the annual variability in the relationship between sunshine duration and global radiation. First, we demonstrate this on a daily timestep basis: >>> from hydpy import pub, round_ >>> pub.timegrids = "2000-01-30", "2000-02-03", "1d" >>> from hydpy.models.meteo import * >>> parameterstep() >>> derived.moy.update() >>> derived.days.update() >>> angstromconstant.jan = 0.1 >>> angstromfactor.jan = 0.5 >>> angstromalternative.jan = 0.2 >>> angstromconstant.feb = 0.2 >>> angstromfactor.feb = 0.6 >>> angstromalternative.feb = 0.3 >>> fluxes.extraterrestrialradiation = 340.0 >>> model.idx_sim = 1 >>> round_(model.return_dailyglobalradiation_v1(0.6, 1.0)) 136.0 >>> model.idx_sim = 2 >>> round_(model.return_dailyglobalradiation_v1(0.6, 1.0)) 190.4 If the possible sunshine duration is zero, we generally set global radiation to zero (even if the actual sunshine duration is larger than zero, which might occur as a result of inconsistencies between measured and calculated input data): >>> round_(model.return_dailyglobalradiation_v1(0.6, 0.0)) 0.0 When actual sunshine is zero, the alternative Ångström coefficient applies: >>> model.idx_sim = 1 >>> round_(model.return_dailyglobalradiation_v1(0.0, 1.0)) 68.0 >>> model.idx_sim = 2 >>> round_(model.return_dailyglobalradiation_v1(0.0, 1.0)) 102.0 All of the examples and explanations above hold for short simulation timesteps, except that |AngstromAlternative| never replaces |AngstromConstant|: >>> pub.timegrids = "2000-01-30", "2000-02-03", "1h" >>> derived.moy.update() >>> derived.days.update() >>> model.idx_sim = 1 >>> round_(model.return_dailyglobalradiation_v1(0.0, 1.0)) 34.0 .. testsetup:: >>> del pub.timegrids """ CONTROLPARAMETERS = ( meteo_control.AngstromConstant, meteo_control.AngstromFactor, meteo_control.AngstromAlternative, ) DERIVEDPARAMETERS = ( meteo_derived.MOY, meteo_derived.Days, ) REQUIREDSEQUENCES = (meteo_fluxes.ExtraterrestrialRadiation,) @staticmethod def __call__( model: modeltools.Model, sunshineduration: float, possiblesunshineduration: float, ) -> float: con = model.parameters.control.fastaccess der = model.parameters.derived.fastaccess flu = model.sequences.fluxes.fastaccess if possiblesunshineduration > 0.0: idx = der.moy[model.idx_sim] if (sunshineduration <= 0.0) and (der.days >= 1.0): return flu.extraterrestrialradiation * con.angstromalternative[idx] return flu.extraterrestrialradiation * ( con.angstromconstant[idx] + con.angstromfactor[idx] * sunshineduration / possiblesunshineduration ) return 0.0
[docs] class Calc_ClearSkySolarRadiation_V1(modeltools.Method): r"""Calculate the clear sky solar radiation according to :cite:t:`ref-Allen1998`. Basic equation (:cite:t`ref-Allen1998`, eq. 35): :math:`ClearSkySolarRadiation = ExtraterrestrialRadiation \cdot (AngstromConstant + AngstromFactor)` Example: We use the Ångström coefficients (a=0.19, b=0.55) recommended for Germany by DVWK-M 504 :cite:t:`ref-DVWK` for January and the default values (a=0.25, b=0.5) for February: >>> from hydpy import pub >>> pub.timegrids = "2000-01-30", "2000-02-03", "1d" >>> from hydpy.models.meteo import * >>> parameterstep() >>> angstromconstant.jan = 0.19 >>> angstromfactor.jan = 0.55 >>> angstromconstant.feb = 0.25 >>> angstromfactor.feb = 0.5 >>> derived.moy.update() >>> fluxes.extraterrestrialradiation = 200.0 >>> model.idx_sim = 1 >>> model.calc_clearskysolarradiation_v1() >>> fluxes.clearskysolarradiation clearskysolarradiation(148.0) >>> model.idx_sim = 2 >>> model.calc_clearskysolarradiation_v1() >>> fluxes.clearskysolarradiation clearskysolarradiation(150.0) .. testsetup:: >>> del pub.timegrids """ CONTROLPARAMETERS = ( meteo_control.AngstromConstant, meteo_control.AngstromFactor, ) DERIVEDPARAMETERS = (meteo_derived.MOY,) REQUIREDSEQUENCES = (meteo_fluxes.ExtraterrestrialRadiation,) RESULTSEQUENCES = (meteo_fluxes.ClearSkySolarRadiation,) @staticmethod def __call__(model: modeltools.Model) -> None: con = model.parameters.control.fastaccess der = model.parameters.derived.fastaccess flu = model.sequences.fluxes.fastaccess idx = der.moy[model.idx_sim] flu.clearskysolarradiation = flu.extraterrestrialradiation * ( con.angstromconstant[idx] + con.angstromfactor[idx] )
[docs] class Calc_GlobalRadiation_V1(modeltools.Method): r"""Calculate the global radiation according to :cite:t:`ref-Allen1998`. Basic equation (:cite:t:`ref-Allen1998`, equation 35): :math:`GlobalRadiation = ExtraterrestrialRadiation \cdot (AngstromConstant + AngstromFactor \cdot SunshineDuration / PossibleSunshineDuration)` Example: We use the Ångström coefficients (a=0.19, b=0.55) recommended for Germany by DVWK-M 504 :cite:t:`ref-DVWK` for January and the default values (a=0.25, b=0.5) for February: >>> from hydpy import pub, round_ >>> pub.timegrids = "2000-01-30", "2000-02-03", "1d" >>> from hydpy.models.meteo import * >>> parameterstep() >>> angstromconstant.jan = 0.19 >>> angstromfactor.jan = 0.55 >>> angstromconstant.feb = 0.25 >>> angstromfactor.feb = 0.5 >>> derived.moy.update() >>> inputs.sunshineduration = 12.0 >>> factors.possiblesunshineduration = 14.0 >>> fluxes.extraterrestrialradiation = 200.0 >>> model.idx_sim = 1 >>> model.calc_globalradiation_v1() >>> fluxes.globalradiation globalradiation(132.285714) >>> model.idx_sim = 2 >>> model.calc_globalradiation_v1() >>> fluxes.globalradiation globalradiation(135.714286) For zero possible sunshine durations, |Calc_GlobalRadiation_V1| sets |meteo_fluxes.GlobalRadiation| to zero: >>> factors.possiblesunshineduration = 0.0 >>> model.calc_globalradiation_v1() >>> fluxes.globalradiation globalradiation(0.0) .. testsetup:: >>> del pub.timegrids """ CONTROLPARAMETERS = ( meteo_control.AngstromConstant, meteo_control.AngstromFactor, ) DERIVEDPARAMETERS = (meteo_derived.MOY,) REQUIREDSEQUENCES = ( meteo_inputs.SunshineDuration, meteo_factors.PossibleSunshineDuration, meteo_fluxes.ExtraterrestrialRadiation, ) RESULTSEQUENCES = (meteo_fluxes.GlobalRadiation,) @staticmethod def __call__(model: modeltools.Model) -> None: con = model.parameters.control.fastaccess der = model.parameters.derived.fastaccess inp = model.sequences.inputs.fastaccess flu = model.sequences.fluxes.fastaccess fac = model.sequences.factors.fastaccess if fac.possiblesunshineduration > 0.0: idx = der.moy[model.idx_sim] flu.globalradiation = flu.extraterrestrialradiation * ( con.angstromconstant[idx] + con.angstromfactor[idx] * inp.sunshineduration / fac.possiblesunshineduration ) else: flu.globalradiation = 0.0
[docs] class Calc_UnadjustedGlobalRadiation_V1(modeltools.Method): r"""Calculate the unadjusted global radiation according to :cite:t:`ref-LARSIM`. Additional requirements: |Model.idx_sim| Basic equation: .. math:: UnadjustedGlobalRadiation = NmbLogEntries \cdot \frac{SP}{100} \cdot \begin{cases} Return\_DailyGlobalRadiation\_V1( SunshineDuration, PossibleSunshineDuration) &|\ PossibleSunshineDuration > 0 \\ Return\_DailyGlobalRadiation\_V1( DailySunshineDuration, DailyPossibleSunshineDuration) &|\ PossibleSunshineDuration = 0 \end{cases} Examples: Method |Calc_UnadjustedGlobalRadiation_V1| uses the actual value of |PortionDailyRadiation| and method |Return_DailyGlobalRadiation_V1| to calculate global radiation according to the current values of |meteo_inputs.SunshineDuration| and |PossibleSunshineDuration|: >>> from hydpy import pub >>> pub.timegrids = "2000-01-31", "2000-02-02", "6h" >>> from hydpy.models.meteo import * >>> parameterstep() >>> derived.nmblogentries.update() >>> derived.moy.update() >>> derived.days.update() >>> angstromconstant.jan = 0.1 >>> angstromfactor.jan = 0.5 >>> angstromalternative.jan = 0.2 >>> inputs.sunshineduration = 0.6 >>> factors.possiblesunshineduration = 1.0 >>> fluxes.extraterrestrialradiation = 340.0 >>> factors.portiondailyradiation = 50.0 >>> model.idx_sim = 3 >>> model.calc_unadjustedglobalradiation_v1() >>> fluxes.unadjustedglobalradiation unadjustedglobalradiation(272.0) During nighttime periods, the value of |PossibleSunshineDuration| is zero. Then, |Calc_GlobalRadiation_V1| uses the values of |DailySunshineDuration| and |DailyPossibleSunshineDuration| as surrogates: >>> factors.possiblesunshineduration = 0.0 >>> factors.dailysunshineduration = 4.0 >>> factors.dailypossiblesunshineduration = 10.0 >>> model.calc_unadjustedglobalradiation_v1() >>> fluxes.unadjustedglobalradiation unadjustedglobalradiation(204.0) .. testsetup:: >>> del pub.timegrids """ SUBMETHODS = (Return_DailyGlobalRadiation_V1,) CONTROLPARAMETERS = ( meteo_control.AngstromConstant, meteo_control.AngstromFactor, meteo_control.AngstromAlternative, ) DERIVEDPARAMETERS = ( meteo_derived.NmbLogEntries, meteo_derived.MOY, meteo_derived.Days, ) REQUIREDSEQUENCES = ( meteo_inputs.SunshineDuration, meteo_factors.PossibleSunshineDuration, meteo_factors.DailySunshineDuration, meteo_factors.DailyPossibleSunshineDuration, meteo_factors.PortionDailyRadiation, meteo_fluxes.ExtraterrestrialRadiation, ) RESULTSEQUENCES = (meteo_fluxes.UnadjustedGlobalRadiation,) @staticmethod def __call__(model: modeltools.Model) -> None: der = model.parameters.derived.fastaccess inp = model.sequences.inputs.fastaccess fac = model.sequences.factors.fastaccess flu = model.sequences.fluxes.fastaccess if fac.possiblesunshineduration > 0.0: d_act = inp.sunshineduration d_pos = fac.possiblesunshineduration else: d_act = fac.dailysunshineduration d_pos = fac.dailypossiblesunshineduration flu.unadjustedglobalradiation = ( der.nmblogentries * fac.portiondailyradiation / 100.0 ) * model.return_dailyglobalradiation_v1(d_act, d_pos)
[docs] class Update_LoggedUnadjustedGlobalRadiation_V1(modeltools.Method): """Log the unadjusted global radiation values of the last 24 hours. Example: The following example shows that each new method call successively moves the three memorised values to the right and stores the respective new value on the most left position: >>> from hydpy.models.meteo import * >>> simulationstep("8h") >>> parameterstep() >>> derived.nmblogentries.update() >>> logs.loggedunadjustedglobalradiation = 0.0 >>> from hydpy import UnitTest >>> test = UnitTest(model, ... model.update_loggedunadjustedglobalradiation_v1, ... last_example=4, ... parseqs=(fluxes.unadjustedglobalradiation, ... logs.loggedunadjustedglobalradiation)) >>> test.nexts.unadjustedglobalradiation = 1.0, 3.0, 2.0, 4.0 >>> del test.inits.loggedunadjustedglobalradiation >>> test() | ex. | unadjustedglobalradiation | loggedunadjustedglobalradiation | ------------------------------------------------------------------------------- | 1 | 1.0 | 1.0 0.0 0.0 | | 2 | 3.0 | 3.0 1.0 0.0 | | 3 | 2.0 | 2.0 3.0 1.0 | | 4 | 4.0 | 4.0 2.0 3.0 | """ DERIVEDPARAMETERS = (meteo_derived.NmbLogEntries,) REQUIREDSEQUENCES = (meteo_fluxes.UnadjustedGlobalRadiation,) UPDATEDSEQUENCES = (meteo_logs.LoggedUnadjustedGlobalRadiation,) @staticmethod def __call__(model: modeltools.Model) -> None: der = model.parameters.derived.fastaccess flu = model.sequences.fluxes.fastaccess log = model.sequences.logs.fastaccess for idx in range(der.nmblogentries - 1, 0, -1): log.loggedunadjustedglobalradiation[ idx ] = log.loggedunadjustedglobalradiation[idx - 1] log.loggedunadjustedglobalradiation[0] = flu.unadjustedglobalradiation
[docs] class Calc_DailyGlobalRadiation_V1(modeltools.Method): r"""Calculate the daily global radiation. Additional requirements: |Model.idx_sim| Basic equation: :math:`DailyGlobalRadiation = Return\_DailyGlobalRadiation\_V1( DailySunshineDuration, DailyPossibleSunshineDuration)` Example: >>> from hydpy.models.meteo import * >>> parameterstep() >>> from hydpy import pub >>> angstromconstant.jan = 0.1 >>> angstromfactor.jan = 0.5 >>> angstromconstant.feb = 0.2 >>> angstromfactor.feb = 0.6 We set the extraterrestrial radiation to 200 W/m² and the possible sunshine duration to 12 hours: >>> fluxes.extraterrestrialradiation = 200.0 >>> factors.dailypossiblesunshineduration = 12.0 We define a daily simulation step size and update the relevant derived parameters: >>> pub.timegrids = "2000-01-30", "2000-02-03", "1d" >>> derived.moy.update() Applying the Ångström coefficients for January and February on the defined extraterrestrial radiation and a sunshine duration of 7.2 hours results in a daily global radiation average of 80 and 112 W/m², respectively: >>> model.idx_sim = 1 >>> factors.dailysunshineduration = 7.2 >>> model.calc_dailyglobalradiation_v1() >>> fluxes.dailyglobalradiation dailyglobalradiation(80.0) >>> model.idx_sim = 2 >>> model.calc_dailyglobalradiation_v1() >>> fluxes.dailyglobalradiation dailyglobalradiation(112.0) Finally, we demonstrate for January that method |Calc_DailyGlobalRadiation_V1| calculates the same values for an hourly simulation time step, as long as the daily sum of sunshine duration remains identical: >>> pub.timegrids = "2000-01-30", "2000-02-03", "1h" >>> derived.moy.update() The actual simulation step starts at 11 o'clock and ends at 12 o'clock: >>> model.idx_sim = pub.timegrids.init["2000-01-31 11:00"] >>> factors.dailysunshineduration = 7.2 >>> model.calc_dailyglobalradiation_v1() >>> fluxes.dailyglobalradiation dailyglobalradiation(80.0) .. testsetup:: >>> del pub.timegrids """ SUBMETHODS = (Return_DailyGlobalRadiation_V1,) CONTROLPARAMETERS = ( meteo_control.AngstromConstant, meteo_control.AngstromFactor, meteo_control.AngstromAlternative, ) DERIVEDPARAMETERS = ( meteo_derived.MOY, meteo_derived.Days, ) REQUIREDSEQUENCES = ( meteo_factors.DailySunshineDuration, meteo_factors.DailyPossibleSunshineDuration, meteo_fluxes.ExtraterrestrialRadiation, ) UPDATEDSEQUENCES = (meteo_fluxes.DailyGlobalRadiation,) @staticmethod def __call__(model: modeltools.Model) -> None: fac = model.sequences.factors.fastaccess flu = model.sequences.fluxes.fastaccess flu.dailyglobalradiation = model.return_dailyglobalradiation_v1( fac.dailysunshineduration, fac.dailypossiblesunshineduration )
[docs] class Return_SunshineDuration_V1(modeltools.Method): r"""Calculate the sunshine duration reversely to |Return_DailyGlobalRadiation_V1| and return it. Basic equation: :math:`\frac{possiblesunshineduration}{AngstromFactor} \cdot \left( \frac{globalradiation}{extraterrestrialradiation} - AngstromConstant \right)` Example: Essentially, |Return_SunshineDuration_V1| tries to invert |Return_DailyGlobalRadiation_V1| and thus also relies on the Ångström formula. Instead of estimating global radiation from sunshine duration, it estimates sunshine duration from global radiation. We demonstrate this by repeating the first examples of |Calc_GlobalRadiation_V1| "backwards": >>> from hydpy import pub, round_ >>> pub.timegrids = "2000-01-30", "2000-02-03", "1d" >>> from hydpy.models.meteo import * >>> parameterstep() >>> derived.moy.update() >>> angstromconstant.jan = 0.1 >>> angstromfactor.jan = 0.5 >>> angstromalternative.jan = 0.2 >>> angstromconstant.feb = 0.2 >>> angstromfactor.feb = 0.6 >>> angstromalternative.feb = 0.3 >>> model.idx_sim = 1 >>> round_(model.return_sunshineduration_v1(136.0, 340.0, 1.0)) 0.6 >>> model.idx_sim = 2 >>> round_(model.return_sunshineduration_v1(190.4, 340.0, 1.0)) 0.6 In contrast to |Return_DailyGlobalRadiation_V1|, |Return_SunshineDuration_V1| never applies |AngstromAlternative| instead of |AngstromConstant|. Hence, as in the following repeated examples, |Return_SunshineDuration_V1| might invert |Return_DailyGlobalRadiation_V1| only roughly during periods with little sunshine: >>> model.idx_sim = 1 >>> round_(model.return_sunshineduration_v1(68.0, 340.0, 1.0)) 0.2 >>> model.idx_sim = 2 >>> round_(model.return_sunshineduration_v1(102.0, 340.0, 1.0)) 0.166667 We must consider additional corner cases. The first one deals with a potential zero division during nighttime. If extraterrestrial radiation is zero, |Return_SunshineDuration_V1| takes the astronomically possible sunshine duration (which should ideally also be zero) as the actual sunshine duration: >>> model.idx_sim = 1 >>> round_(model.return_sunshineduration_v1(136.0, 0.0, 0.00001)) 0.00001 Measured global radiation smaller than estimated diffusive radiation would result in negative sunshine durations when following the Ångström formula strictly. Additionally, measured global radiation larger than estimated clear-sky radiation would result in sunshine durations larger than the astronomically possible sunshine duration. The following example shows that method |Return_SunshineDuration_V1| prevents such inconsistencies by trimming the estimated sunshine duration when necessary: >>> for globrad in (0.0, 34.0, 35.0, 136.0, 203.0, 204.0, 340.0): ... sundur = model.return_sunshineduration_v1(globrad, 340.0, 1.0) ... round_((globrad, sundur)) 0.0, 0.0 34.0, 0.0 35.0, 0.005882 136.0, 0.6 203.0, 0.994118 204.0, 1.0 340.0, 1.0 .. testsetup:: >>> del pub.timegrids """ SUBMETHODS = () CONTROLPARAMETERS = ( meteo_control.AngstromConstant, meteo_control.AngstromFactor, ) DERIVEDPARAMETERS = (meteo_derived.MOY,) @staticmethod def __call__( model: modeltools.Model, globalradiation: float, extraterrestrialradiation: float, possiblesunshineduration: float, ) -> float: con = model.parameters.control.fastaccess der = model.parameters.derived.fastaccess if extraterrestrialradiation <= 0.0: return possiblesunshineduration idx = der.moy[model.idx_sim] d_sd = (possiblesunshineduration / con.angstromfactor[idx]) * ( globalradiation / extraterrestrialradiation - con.angstromconstant[idx] ) return min(max(d_sd, 0.0), possiblesunshineduration)
[docs] class Calc_UnadjustedSunshineDuration_V1(modeltools.Method): r"""Calculate the unadjusted sunshine duration reversely to |Calc_UnadjustedGlobalRadiation_V1|. Additional requirements: |Model.idx_sim| Basic equation: :math:`UnadjustedSunshineDuration = Return\_SunshineDuration \left( GlobalRadiation, NmbLogEntries \cdot \frac{PortionDailyRadiation}{100} \cdot ExtraterrestrialRadiation, PossibleSunshineDuration \right)` Example: Method |Calc_UnadjustedSunshineDuration_V1| relies on |Return_SunshineDuration_V1| and thus comes with the same limitation regarding periods with little sunshine. See its documentation for further information. Here, we only demonstrate the proper passing of |meteo_inputs.GlobalRadiation|, |ExtraterrestrialRadiation| (eventually reduced by |PortionDailyRadiation|) and |PossibleSunshineDuration|: >>> from hydpy import pub >>> pub.timegrids = "2000-01-31", "2000-02-02", "6h" >>> from hydpy.models.meteo import * >>> parameterstep() >>> derived.nmblogentries.update() >>> derived.moy.update() >>> angstromconstant.jan = 0.1 >>> angstromfactor.jan = 0.5 >>> inputs.globalradiation = 272.0 >>> factors.possiblesunshineduration = 1.0 >>> factors.portiondailyradiation = 50.0 >>> fluxes.extraterrestrialradiation = 340.0 >>> model.idx_sim = 3 >>> model.calc_unadjustedsunshineduration_v1() >>> factors.unadjustedsunshineduration unadjustedsunshineduration(0.6) .. testsetup:: >>> del pub.timegrids """ SUBMETHODS = (Return_SunshineDuration_V1,) CONTROLPARAMETERS = ( meteo_control.AngstromConstant, meteo_control.AngstromFactor, ) DERIVEDPARAMETERS = ( meteo_derived.MOY, meteo_derived.NmbLogEntries, ) REQUIREDSEQUENCES = ( meteo_inputs.GlobalRadiation, meteo_factors.PossibleSunshineDuration, meteo_factors.PortionDailyRadiation, meteo_fluxes.ExtraterrestrialRadiation, ) RESULTSEQUENCES = (meteo_factors.UnadjustedSunshineDuration,) @staticmethod def __call__(model: modeltools.Model) -> None: der = model.parameters.derived.fastaccess inp = model.sequences.inputs.fastaccess fac = model.sequences.factors.fastaccess flu = model.sequences.fluxes.fastaccess fac.unadjustedsunshineduration = model.return_sunshineduration_v1( inp.globalradiation, flu.extraterrestrialradiation * der.nmblogentries * fac.portiondailyradiation / 100.0, fac.possiblesunshineduration, )
[docs] class Calc_GlobalRadiation_V2(modeltools.Method): r"""Adjust the current global radiation to the daily global radiation according to :cite:t:`ref-LARSIM`. Additional requirements: |Model.idx_sim| Basic equation: :math:`GlobalRadiation = UnadjustedGlobalRadiation \cdot \frac{DailyGlobalRadiation}{\sum LoggedUnadjustedGlobalRadiation / NmbLogEntries}` Examples: The purpose of method |Calc_GlobalRadiation_V2| is to adjust hourly global radiation values (or those of other short simulation time steps) so that their mean over the last 24 hours equals the global radiation value directly calculated with the relative sunshine duration over the last 24 hours. We try to explain this somewhat counterintuitive approach by extending the documentation examples on method |Calc_DailyGlobalRadiation_V1|. Again, we start with a daily simulation time step: >>> from hydpy.models.meteo import * >>> simulationstep("1d") >>> parameterstep() >>> derived.nmblogentries.update() For such a daily simulation time step, the values of the sequences |UnadjustedGlobalRadiation|, |DailyGlobalRadiation|, and |LoggedUnadjustedGlobalRadiation| must be identical: >>> model.idx_sim = 1 >>> fluxes.unadjustedglobalradiation = 200.0 >>> fluxes.dailyglobalradiation = 200.0 >>> logs.loggedunadjustedglobalradiation = 200.0 After calling |Calc_GlobalRadiation_V2|, the same holds for the adjusted global radiation sum: >>> model.calc_globalradiation_v2() >>> fluxes.globalradiation globalradiation(200.0) Intuitively, one would not expect method |Calc_GlobalRadiation_V2| to have any effect when applied on daily simulation time steps at all. However, it corrects "wrong" predefined global radiation values: >>> fluxes.dailyglobalradiation = 280.0 >>> model.calc_globalradiation_v2() >>> fluxes.globalradiation globalradiation(280.0) We now demonstrate how method |Calc_GlobalRadiation_V2| works for hourly simulation time steps: >>> simulationstep("1h") >>> derived.nmblogentries.update() The daily global radiation value does not depend on the simulation timestep. We reset it to 200 W/m²: >>> fluxes.dailyglobalradiation = 200.0 The other global radiation values must be smaller and vary throughout the day. We set them in agreement with the logged sunshine duration specified in the documentation on method |Calc_DailyGlobalRadiation_V1|: >>> fluxes.unadjustedglobalradiation = 960.0 >>> logs.loggedunadjustedglobalradiation = ( ... 960.0, 960.0, 240.0, 120.0, 120.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 120.0, 480.0, 720.0, 840.0, 960.0) Compared with the total 24 hours, the simulation time steps around noon are relatively sunny, both for the current and the last day (see the first and the last entry of the log sequence for the sunshine duration). Accordingly, the hourly global radiation values' mean (230 W/m²) is larger than the directly calculated daily mean (200 W/m²). Method |Calc_GlobalRadiation_V2| uses the fraction of both sums to calculate the adjusted global radiation (:math:`960 \cdot 200 / 230`): >>> model.calc_globalradiation_v2() >>> fluxes.globalradiation globalradiation(834.782609) """ DERIVEDPARAMETERS = (meteo_derived.NmbLogEntries,) REQUIREDSEQUENCES = ( meteo_fluxes.UnadjustedGlobalRadiation, meteo_fluxes.DailyGlobalRadiation, meteo_logs.LoggedUnadjustedGlobalRadiation, ) RESULTSEQUENCES = (meteo_fluxes.GlobalRadiation,) @staticmethod def __call__(model: modeltools.Model) -> None: der = model.parameters.derived.fastaccess flu = model.sequences.fluxes.fastaccess log = model.sequences.logs.fastaccess d_glob_sum = 0.0 for idx in range(der.nmblogentries): d_glob_sum += log.loggedunadjustedglobalradiation[idx] d_glob_mean = d_glob_sum / der.nmblogentries flu.globalradiation = ( flu.unadjustedglobalradiation * flu.dailyglobalradiation / d_glob_mean )
[docs] class Calc_SunshineDuration_V1(modeltools.Method): r"""Calculate the sunshine duration according to :cite:t:`ref-Allen1998`. Basic equation (:cite:t:`ref-Allen1998`, equation 35, rearranged): :math:`SunshineDuration = \left(\frac{GlobalRadiation}{ExtraterrestrialRadiation}-AngstromConstant \right) \cdot \frac{PossibleSunshineDuration}{AngstromFactor}` Example: Essentially, |Calc_SunshineDuration_V1| inverts |Calc_GlobalRadiation_V1| and thus also relies on the Ångström formula. Instead of estimating global radiation from sunshine duration, it estimates global radiation from sunshine duration. We demonstrate this by repeating the examples of |Calc_GlobalRadiation_V1| "backwards": >>> from hydpy import pub, round_ >>> pub.timegrids = "2000-01-30", "2000-02-03", "1d" >>> from hydpy.models.meteo import * >>> parameterstep() >>> angstromconstant.jan = 0.19 >>> angstromfactor.jan = 0.55 >>> angstromconstant.feb = 0.25 >>> angstromfactor.feb = 0.5 >>> derived.moy.update() >>> factors.possiblesunshineduration = 14.0 >>> fluxes.extraterrestrialradiation = 200.0 >>> model.idx_sim = 1 >>> inputs.globalradiation = 132.285714 >>> model.calc_sunshineduration_v1() >>> factors.sunshineduration sunshineduration(12.0) >>> model.idx_sim = 2 >>> inputs.globalradiation = 135.714286 >>> model.calc_sunshineduration_v1() >>> factors.sunshineduration sunshineduration(12.0) |Calc_SunshineDuration_V1| sets |meteo_factors.SunshineDuration| to zero for zero extraterrestrial radiation: >>> fluxes.extraterrestrialradiation = 0.0 >>> model.calc_sunshineduration_v1() >>> factors.sunshineduration sunshineduration(0.0) Inconsistencies between global radiation measurements and the Ångström formula (and the selected coefficients) can result in unrealistic sunshine duration estimates. Method |Calc_SunshineDuration_V1| reduces this problem by lowering too high values to the possible sunshine duration and increasing too low values to zero: >>> fluxes.extraterrestrialradiation = 200.0 >>> inputs.globalradiation = 210.0 >>> model.calc_sunshineduration_v1() >>> factors.sunshineduration sunshineduration(14.0) >>> inputs.globalradiation = 0.0 >>> model.calc_sunshineduration_v1() >>> factors.sunshineduration sunshineduration(0.0) .. testsetup:: >>> del pub.timegrids """ CONTROLPARAMETERS = ( meteo_control.AngstromConstant, meteo_control.AngstromFactor, ) DERIVEDPARAMETERS = (meteo_derived.MOY,) REQUIREDSEQUENCES = ( meteo_inputs.GlobalRadiation, meteo_factors.PossibleSunshineDuration, meteo_fluxes.ExtraterrestrialRadiation, ) RESULTSEQUENCES = (meteo_factors.SunshineDuration,) @staticmethod def __call__(model: modeltools.Model) -> None: con = model.parameters.control.fastaccess der = model.parameters.derived.fastaccess inp = model.sequences.inputs.fastaccess flu = model.sequences.fluxes.fastaccess fac = model.sequences.factors.fastaccess if flu.extraterrestrialradiation > 0.0: idx = der.moy[model.idx_sim] d_sd = ( (inp.globalradiation / flu.extraterrestrialradiation) - con.angstromconstant[idx] ) * (fac.possiblesunshineduration / con.angstromfactor[idx]) fac.sunshineduration = min(max(d_sd, 0.0), fac.possiblesunshineduration) else: fac.sunshineduration = 0.0
[docs] class Update_LoggedUnadjustedSunshineDuration_V1(modeltools.Method): """Log the unadjusted sunshine duration values of the last 24 hours. Example: The following example shows that each new method call successively moves the three memorised values to the right and stores the respective new value on the most left position: >>> from hydpy.models.meteo import * >>> simulationstep("8h") >>> parameterstep() >>> derived.nmblogentries.update() >>> logs.loggedunadjustedsunshineduration = 0.0 >>> from hydpy import UnitTest >>> test = UnitTest(model, ... model.update_loggedunadjustedsunshineduration_v1, ... last_example=4, ... parseqs=(factors.unadjustedsunshineduration, ... logs.loggedunadjustedsunshineduration)) >>> test.nexts.unadjustedsunshineduration = 1.0, 3.0, 2.0, 4.0 >>> del test.inits.loggedunadjustedsunshineduration >>> test() # doctest: +ELLIPSIS | ex. | unadjustedsunshineduration | ... loggedunadjustedsunshineduration | -------------------------------------...----------------------------------- | 1 | 1.0 | 1.0 0.0 ... 0.0 | | 2 | 3.0 | 3.0 1.0 ... 0.0 | | 3 | 2.0 | 2.0 3.0 ... 1.0 | | 4 | 4.0 | 4.0 2.0 ... 3.0 | """ DERIVEDPARAMETERS = (meteo_derived.NmbLogEntries,) REQUIREDSEQUENCES = (meteo_factors.UnadjustedSunshineDuration,) UPDATEDSEQUENCES = (meteo_logs.LoggedUnadjustedSunshineDuration,) @staticmethod def __call__(model: modeltools.Model) -> None: der = model.parameters.derived.fastaccess fac = model.sequences.factors.fastaccess log = model.sequences.logs.fastaccess for idx in range(der.nmblogentries - 1, 0, -1): log.loggedunadjustedsunshineduration[ idx ] = log.loggedunadjustedsunshineduration[idx - 1] log.loggedunadjustedsunshineduration[0] = fac.unadjustedsunshineduration
[docs] class Calc_DailySunshineDuration_V2(modeltools.Method): r"""Calculate the daily sunshine duration reversely to |Calc_DailyGlobalRadiation_V1|. Additional requirements: |Model.idx_sim| Basic equation: :math:`DailySunshineDuration = Return\_SunshineDuration \left( DailyGlobalRadiation, ExtraterrestrialRadiation, DailyPossibleSunshineDuration \right)` Example: Method |Calc_UnadjustedSunshineDuration_V1| relies on |Return_SunshineDuration_V1| and thus comes with the same limitation regarding periods with little sunshine. See its documentation for further information. Here, we only demonstrate the proper passing of |DailyGlobalRadiation|, |ExtraterrestrialRadiation|, and |DailyPossibleSunshineDuration|: >>> from hydpy import pub >>> pub.timegrids = "2000-01-30", "2000-02-03", "1d" >>> from hydpy.models.meteo import * >>> parameterstep() >>> derived.moy.update() >>> angstromconstant.jan = 0.1 >>> angstromfactor.jan = 0.5 >>> factors.dailypossiblesunshineduration = 12.0 >>> fluxes.dailyglobalradiation = 80.0 >>> fluxes.extraterrestrialradiation = 200.0 >>> model.idx_sim = 1 >>> model.calc_dailysunshineduration_v2() >>> factors.dailysunshineduration dailysunshineduration(7.2) .. testsetup:: >>> del pub.timegrids """ SUBMETHODS = (Return_SunshineDuration_V1,) CONTROLPARAMETERS = ( meteo_control.AngstromConstant, meteo_control.AngstromFactor, ) DERIVEDPARAMETERS = (meteo_derived.MOY,) REQUIREDSEQUENCES = ( meteo_factors.DailyPossibleSunshineDuration, meteo_fluxes.DailyGlobalRadiation, meteo_fluxes.ExtraterrestrialRadiation, ) RESULTSEQUENCES = (meteo_factors.DailySunshineDuration,) @staticmethod def __call__(model: modeltools.Model) -> None: fac = model.sequences.factors.fastaccess flu = model.sequences.fluxes.fastaccess fac.dailysunshineduration = model.return_sunshineduration_v1( flu.dailyglobalradiation, flu.extraterrestrialradiation, fac.dailypossiblesunshineduration, )
[docs] class Calc_SunshineDuration_V2(modeltools.Method): r"""Adjust the current sunshine duration to the daily sunshine duration like |Calc_GlobalRadiation_V2| adjusts the current global radiation to the daily global radiation. Additional requirements: |Model.idx_sim| Basic equation: :math:`SunshineDuration = UnadjustedSunshineDuration \cdot \frac{DailySunshineDuration}{\sum LoggedUnadjustedSunshineDuration}` Examples: |Calc_SunshineDuration_V2| implements a standardisation approach following the reasons and strategy explained in the documentation on method |Calc_GlobalRadiation_V2|. Hence, we first adopt its examples without repeated explanations: >>> from hydpy.models.meteo import * >>> simulationstep("1d") >>> parameterstep() >>> derived.nmblogentries.update() >>> model.idx_sim = 1 >>> factors.unadjustedsunshineduration = 4.0 >>> factors.dailysunshineduration = 4.0 >>> logs.loggedunadjustedsunshineduration = 4.0 >>> model.calc_sunshineduration_v2() >>> factors.sunshineduration sunshineduration(4.0) >>> factors.dailysunshineduration = 5.6 >>> model.calc_sunshineduration_v2() >>> factors.sunshineduration sunshineduration(5.6) >>> simulationstep("1h") >>> derived.nmblogentries.update() >>> factors.dailysunshineduration = 4.0 >>> factors.unadjustedsunshineduration = 0.8 >>> logs.loggedunadjustedsunshineduration = ( ... 0.8, 0.8, 0.2, 0.1, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.4, 0.6, 0.7, 0.8) >>> model.calc_sunshineduration_v2() >>> factors.sunshineduration sunshineduration(0.695652) The global radiation of a day cannot be zero due to diffusive radiations, but the sunshine duration can. Hence, |Calc_SunshineDuration_V2| requires a safeguard against zero-divisions not relevant for |Calc_GlobalRadiation_V2|. We decided to generally set the adjusted sunshine duration to zero if the directly calculated daily sunshine duration or the current unadjusted sunshine duration is zero. (Note the sum of the logged unadjusted sunshine duration can only be zero if the present unadjusted sunshine duration is zero): >>> factors.unadjustedsunshineduration = 0.0 >>> logs.loggedunadjustedsunshineduration = 0.0 >>> model.calc_sunshineduration_v2() >>> factors.sunshineduration sunshineduration(0.0) """ DERIVEDPARAMETERS = (meteo_derived.NmbLogEntries,) REQUIREDSEQUENCES = ( meteo_factors.UnadjustedSunshineDuration, meteo_factors.DailySunshineDuration, meteo_factors.PossibleSunshineDuration, meteo_logs.LoggedUnadjustedSunshineDuration, ) RESULTSEQUENCES = (meteo_factors.SunshineDuration,) @staticmethod def __call__(model: modeltools.Model) -> None: der = model.parameters.derived.fastaccess fac = model.sequences.factors.fastaccess log = model.sequences.logs.fastaccess d_nom = fac.unadjustedsunshineduration * fac.dailysunshineduration if d_nom == 0.0: fac.sunshineduration = 0.0 else: d_denom = 0.0 for idx in range(der.nmblogentries): d_denom += log.loggedunadjustedsunshineduration[idx] fac.sunshineduration = min(d_nom / d_denom, fac.possiblesunshineduration)
[docs] class Model(modeltools.AdHocModel): """The Meteo base model.""" INLET_METHODS = () RECEIVER_METHODS = () RUN_METHODS = ( Calc_EarthSunDistance_V1, Calc_SolarDeclination_V1, Calc_SolarDeclination_V2, Calc_SunsetHourAngle_V1, Calc_SolarTimeAngle_V1, Calc_TimeOfSunrise_TimeOfSunset_V1, Calc_DailyPossibleSunshineDuration_V1, Calc_PossibleSunshineDuration_V1, Calc_PossibleSunshineDuration_V2, Update_LoggedSunshineDuration_V1, Calc_DailySunshineDuration_V1, Update_LoggedGlobalRadiation_V1, Calc_DailyGlobalRadiation_V2, Calc_ExtraterrestrialRadiation_V1, Calc_ExtraterrestrialRadiation_V2, Calc_DailySunshineDuration_V2, Calc_SunshineDuration_V1, Calc_PortionDailyRadiation_V1, Calc_ClearSkySolarRadiation_V1, Calc_GlobalRadiation_V1, Calc_UnadjustedGlobalRadiation_V1, Calc_UnadjustedSunshineDuration_V1, Update_LoggedUnadjustedGlobalRadiation_V1, Update_LoggedUnadjustedSunshineDuration_V1, Calc_DailyGlobalRadiation_V1, Calc_GlobalRadiation_V2, Calc_SunshineDuration_V2, ) ADD_METHODS = ( Return_DailyGlobalRadiation_V1, Return_SunshineDuration_V1, ) OUTLET_METHODS = () SENDER_METHODS = () SUBMODELS = ()