conv_v002

Inverse distance weighted interpolation.

Version 2 of HydPy-C performs simple inverse distance weighted interpolations between an arbitrary number of models (or data files) providing output and an arbitrary number of models requiring input.

Integration tests

Note

When new to HydPy, consider reading section How to understand integration tests? first.

We perform the following examples over a simulation period of 3 days:

>>> from hydpy import Element, Node, pub
>>> pub.timegrids = "2000-01-01", "2000-01-04", "1d"

conv_v002 implements no parameter with values depending on the simulation step size, which is why we can pass anything (or nothing) to function parameterstep() without changing the following results:

>>> from hydpy.models.conv_v002 import *
>>> parameterstep()

Due to the following configuration, conv_v002 queries its input from the inlet nodes in1, in2, and in3 and passes the interpolation results to the outlet nodes out1, out2, out3, and out4:

>>> in1, in2, in3 = Node("in1"), Node("in2"), Node("in3")
>>> element = Element("conv",
...                   inlets=(in1, in2, in3),
...                   outlets=["out1", "out2", "out3", "out4"])

The following coordinate definitions contain the particular case of outlet node out1, being at the same location as inlet node in1:

>>> inputcoordinates(
...     in1=(0.0, 3.0),
...     in2=(2.0, -1.0),
...     in3=(4.0, 2.0))
>>> outputcoordinates(
...     out1=(0.0, 3.0),
...     out2=(3.0, -2.0),
...     out3=(1.0, 2.0),
...     out4=(1.0, 1.0))

We set the power parameter Power to the standard value of two:

>>> power(2.0)

In the first example, we perform a complete inverse distance weighted interpolation, where we take all input location into account, as long as they provide input data:

>>> maxnmbinputs(3)

conv_v002 does not implement any state or log sequences and thus has no memory at all, making finalising the test setup quite easy. We only need to define time-series for both inlet nodes. Note that we set some numpy nan values to demonstrate how conv_v002 deals with missing values:

>>> element.model = model
>>> from hydpy.core.testtools import IntegrationTest
>>> test = IntegrationTest(element)
>>> test.dateformat = "%Y-%m-%d"
>>> with pub.options.checkseries(False):
...     in1.sequences.sim.series = 1.0, nan, nan
...     in2.sequences.sim.series = 3.0, 2.0, nan
...     in3.sequences.sim.series = 4.0, nan, nan

If available, outlet node in1 receives its value from inlet node in1 due to the same location. At the second time step, all outlet nodes receive the same data as only inlet node in2 provides any data. When no inlet node provides data, the outlet nodes receive nan values:

>>> test()
|       date |           inputs |                 outputs | in1 | in2 | in3 | out1 | out2 | out3 | out4 |
---------------------------------------------------------------------------------------------------------
| 2000-01-01 | 1.0  3.0     4.0 | 1.0  3.0  1.75      2.4 | 1.0 | 3.0 | 4.0 |  1.0 |  3.0 | 1.75 |  2.4 |
| 2000-01-02 | nan  2.0     nan | 2.0  2.0   2.0      2.0 | nan | 2.0 | nan |  2.0 |  2.0 |  2.0 |  2.0 |
| 2000-01-03 | nan  nan     nan | nan  nan   nan      nan | nan | nan | nan |  nan |  nan |  nan |  nan |

We can restrict the number of considered inlet nodes via parameter MaxNmbInputs, which can increase computation speed. However, do not set to low values. Otherwise, you might deteriorate accuracy severely or run into the risk of unhandled nan values:

>>> maxnmbinputs(2)
>>> test()
|       date |           inputs |                          outputs | in1 | in2 | in3 | out1 |     out2 |     out3 | out4 |
--------------------------------------------------------------------------------------------------------------------------
| 2000-01-01 | 1.0  3.0     4.0 | 1.0  3.105263  1.545455      2.0 | 1.0 | 3.0 | 4.0 |  1.0 | 3.105263 | 1.545455 |  2.0 |
| 2000-01-02 | nan  2.0     nan | nan       2.0       nan      2.0 | nan | 2.0 | nan |  nan |      2.0 |      nan |  2.0 |
| 2000-01-03 | nan  nan     nan | nan       nan       nan      nan | nan | nan | nan |  nan |      nan |      nan |  nan |
class hydpy.models.conv_v002.Model[source]

Bases: Model

Version 2 of the Conv model.

The following “inlet update methods” are called in the given sequence at the beginning of each simulation step:
The following “run methods” are called in the given sequence during each simulation step:
  • Calc_Outputs_V2 Perform a simple inverse distance weighted interpolation based on the original data supplied by the input nodes.

The following “outlet update methods” are called in the given sequence at the end of each simulation step:
The following “additional methods” might be called by one or more of the other methods or are meant to be directly called by the user:
class hydpy.models.conv_v002.ControlParameters(master: Parameters, cls_fastaccess: Type[FastAccessParameter] | None = None, cymodel: CyModelProtocol | None = None)

Bases: SubParameters

Control parameters of model conv_v002.

The following classes are selected:
  • InputCoordinates() Coordinates of the inlet nodes [?].

  • OutputCoordinates() Coordinates of the outlet nodes [?].

  • MaxNmbInputs() The maximum number of input locations to be taken into account for interpolating the values of a specific output location [-].

  • Power() Power parameter for calculating inverse distance weights [-].

class hydpy.models.conv_v002.DerivedParameters(master: Parameters, cls_fastaccess: Type[FastAccessParameter] | None = None, cymodel: CyModelProtocol | None = None)

Bases: SubParameters

Derived parameters of model conv_v002.

The following classes are selected:
  • NmbInputs() The number of inlet nodes [-]

  • NmbOutputs() The number of outlet nodes [-]

  • Distances() Distances of the inlet nodes to each outlet node [?].

  • ProximityOrder() Indices of the inlet nodes in the order of their proximity to each outlet node [-].

  • Weights() Weighting coefficients of the inlet nodes corresponding to their proximity to each outlet node and parameter Power [-].

class hydpy.models.conv_v002.FluxSequences(master: Sequences, cls_fastaccess: Type[TypeFastAccess_co] | None = None, cymodel: CyModelProtocol | None = None)

Bases: FluxSequences

Flux sequences of model conv_v002.

The following classes are selected:
  • Inputs() The (unmodified) values supplied by the input nodes [?].

  • Outputs() The final interpolation results estimated for the output nodes [?].

class hydpy.models.conv_v002.InletSequences(master: Sequences, cls_fastaccess: Type[TypeFastAccess_co] | None = None, cymodel: CyModelProtocol | None = None)

Bases: InletSequences

Inlet sequences of model conv_v002.

The following classes are selected:
class hydpy.models.conv_v002.OutletSequences(master: Sequences, cls_fastaccess: Type[TypeFastAccess_co] | None = None, cymodel: CyModelProtocol | None = None)

Bases: OutletSequences

Outlet sequences of model conv_v002.

The following classes are selected: