Source code for hydpy.auxs.smoothtools

# -*- coding: utf-8 -*-
"""This module implements features which help to regularize discontinuous
process equations.

.. _Tyralla (2016): http://www.hydrology.ruhr-uni-bochum.de/hydrolgy/mam/\
download/schriftenreihe_29.pdf

Many hydrological models rely heavily on discontinuous equations describing
hydrological processes.  The related "if-else" blocks are often not
theoretically motivated.  Instead, they are thought to ease implementing
ad hoc solutions of different (parts of) process equations without taking
care of the entire set of process equations.

There are some reasons to ground new model concepts on mainly continuous
process descriptions. See e. g. `Tyralla (2016)`_ for more a more exhaustive
discussion of this topic.  Nevertheless, one might often want -- at least as
a starting point -- to pick single discontinuous but well-established
equations of old model concepts for a new model concept.  The tools
provided by this module can be used to regularize the discontinuities of
such equations.  More concrete, the tools are thought for replacing
discontinuous process equations by continuous approximations.

Some of the implemented features are to be applied during model simulations
or are in some other way performance-critical, which is why we implement
them computationally efficient by using Cython (see the extension module
|smoothutils|.
"""

# import...
# ...from standard-library
import os
from typing import *

# ...from site-packages
# from scipy but not optional due to using interp1d during module initialisation:
from scipy import interpolate  # pylint: disable=ungrouped-imports
import numpy

# ...from HydPy
from hydpy import conf
from hydpy.core import exceptiontools
from hydpy.cythons.autogen import smoothutils

if TYPE_CHECKING:
    from scipy import optimize
else:
    optimize = exceptiontools.OptionalImport("optimize", ["scipy.optimize"], locals())


[docs]def calc_smoothpar_logistic1(metapar): """Return the smoothing parameter corresponding to the given meta parameter when using |smooth_logistic1|. Calculate the smoothing parameter value corresponding the meta parameter value 2.5: >>> from hydpy.auxs.smoothtools import calc_smoothpar_logistic1 >>> smoothpar = calc_smoothpar_logistic1(2.5) When using this smoothing parameter value, the output of function |smooth_logistic1| differs by 1 % from the related "true" discontinuous step function for the input values -2.5 and 2.5 (located at a distance of 2.5 from the position of the discontinuity): >>> from hydpy.cythons import smoothutils >>> from hydpy import round_ >>> round_(smoothutils.smooth_logistic1(-2.5, smoothpar)) 0.01 >>> round_(smoothutils.smooth_logistic1(2.5, smoothpar)) 0.99 For zero or negative meta parameter values, function |calc_smoothpar_logistic1| zero: >>> round_(calc_smoothpar_logistic1(0.0)) 0.0 >>> round_(calc_smoothpar_logistic1(-1.0)) 0.0 """ return numpy.clip(metapar / numpy.log(99.0), 0.0, numpy.inf)
def _error_smoothpar_logistic2(par, metapar): return smoothutils.smooth_logistic2(-metapar, par) - 0.01 def _smooth_logistic2_derivative1(par, metapar): return smoothutils.smooth_logistic2_derivative1(metapar, par)
[docs]def calc_smoothpar_logistic2(metapar, iterate: bool = False): """Return the smoothing parameter corresponding to the given meta parameter when using |smooth_logistic2|. Calculate the smoothing parameter value corresponding the meta parameter value 2.5: >>> from hydpy.auxs.smoothtools import calc_smoothpar_logistic2 >>> smoothpar = calc_smoothpar_logistic2(2.5) When using this smoothing parameter value, the output of function |smooth_logistic2| differs by 1% from the related "true" discontinuous step function for the input values -2.5 and 2.5 (located at a distance of 2.5 from the position of the discontinuity): >>> from hydpy.cythons import smoothutils >>> from hydpy import round_ >>> round_(smoothutils.smooth_logistic2(-2.5, smoothpar)) 0.01 >>> round_(smoothutils.smooth_logistic2(2.5, smoothpar)) 2.51 For zero or negative meta parameter values, function |calc_smoothpar_logistic2| returns zero: >>> round_(calc_smoothpar_logistic2(-1.0)) 0.0 >>> round_(calc_smoothpar_logistic2(-1.0, iterate=True)) 0.0 Note that function |calc_smoothpar_logistic2| returns approximations only. By standard, it relies on linear interpolation between 10,000 unevenly spaced supporting points in the interval [0.0, 1,000]. The achieved interpolation accuracy should suffice for the anticipated applications, but be aware of low accuracies in the extrapolation range: >>> metapars = 1000.0, 2000.0, 3000.0 >>> smoothpars = calc_smoothpar_logistic2(metapars) >>> for metapar, smoothpar in zip(metapars, smoothpars): ... round_(smoothutils.smooth_logistic2(-metapar, smoothpar)) 0.01 0.010137 0.011697 Alternatively, you can gain higher accuracies through the iterative refinement of the results based on the Newton method: >>> for metapar, smoothpar in zip(metapars, smoothpars): ... smoothpar = calc_smoothpar_logistic2(metapar, iterate=True) ... round_(smoothutils.smooth_logistic2(-metapar, smoothpar)) 0.01 0.01 0.01 However, this is possible for scalar values only and very time-consuming. Furthermore, there is no guarantee for success (in the extrapolation range): >>> calc_smoothpar_logistic2(1000000.0, iterate=True) # doctest: +ELLIPSIS Traceback (most recent call last): ... RuntimeError: Failed to converge ... Hence, our advice to model developers is to restrict the allowed span of all smoothing parameters relying on function |calc_smoothpar_logistic2| to the mentioned interval and not to use the iterative refinement strategy. Consider the refinement only in cases that require extremely high accuracies or where one needs to extrapolate a little (of course, the range of the supporting points, provided by file `support_points_for_smoothpar_logistic2.npy`, could also be extended). """ if iterate: if metapar <= 0.0: return 0.0 return optimize.newton( _error_smoothpar_logistic2, 0.3 * metapar ** 0.84, _smooth_logistic2_derivative1, args=(metapar,), ) return numpy.clip( _cubic_interpolator_for_smoothpar_logistic2(metapar), 0.0, numpy.inf )
[docs]def calc_smoothpar_logistic3(metapar): """Return the smoothing parameter corresponding to the given meta parameter when using |smooth_logistic3|. |smooth_logistic3| is only an alias for |smooth_logistic2|. Calculate the smoothing parameter value corresponding the meta parameter value 2.5: >>> from hydpy.auxs.smoothtools import calc_smoothpar_logistic3 >>> smoothpar = calc_smoothpar_logistic3(2.5) When using this smoothing parameter value, the output of function |smooth_logistic3| would ideally differ by 1% from the related "true" discontinuous step function for the input values -2.5 and 3.5 (located at a distance of 2.5 from the position of the nearest discontinuity): >>> from hydpy.cythons import smoothutils >>> from hydpy import round_ >>> round_(smoothutils.smooth_logistic3(-2.5, smoothpar)) 0.009876 >>> round_(smoothutils.smooth_logistic3(3.5, smoothpar)) 0.990124 In contrast to the examples shown for functions |smooth_logistic1| and |smooth_logistic2|, the smoothing parameter determined for function |smooth_logistic3| is not in perfect agreement with the given meta parameter. For most purposes, the resulting error is negligible. If you strive for very high accuracy, ask us to implement some iterative refinement strategy or try it on your own. """ return calc_smoothpar_logistic2(metapar)
[docs]def calc_smoothpar_max1(metapar): """Return the smoothing parameter corresponding to the given meta parameter when using |smooth_max1|. |smooth_max1| is only an alias for |smooth_logistic2|. Calculate the smoothing parameter value corresponding the meta parameter value 2.5: >>> from hydpy.auxs.smoothtools import calc_smoothpar_max1 >>> smoothpar = calc_smoothpar_max1(2.5) When using this smoothing parameter value, the output of function |smooth_max1| is 0.01 above the discontinuous maximum function result, if the absolute value of the difference between the x and the y value is 2.5: >>> from hydpy.cythons import smoothutils >>> from hydpy import round_ >>> round_(smoothutils.smooth_max1(4.0, 1.5, smoothpar)) 4.01 """ return calc_smoothpar_logistic2(metapar)
[docs]def calc_smoothpar_min1(metapar): """Return the smoothing parameter corresponding to the given meta parameter when using |smooth_min1|. |smooth_min1| is only an alias for |smooth_logistic2|. Calculate the smoothing parameter value corresponding the meta parameter value 2.5: >>> from hydpy.auxs.smoothtools import calc_smoothpar_min1 >>> smoothpar = calc_smoothpar_min1(2.5) When using this smoothing parameter value, the output of function |smooth_min1| is 0.01 below the discontinuous minimum function result, if the absolute value of the difference between the x and the y value is 2.5: >>> from hydpy.cythons import smoothutils >>> from hydpy import round_ >>> round_(smoothutils.smooth_min1(-4.0, -1.5, smoothpar)) -4.01 """ return calc_smoothpar_logistic2(metapar)
# Calculate and save the supporting points required for method # `calc_smoothpar_logistic2`: # xys = numpy.zeros((2, 10000), dtype=float) # xys[0, :] = numpy.linspace(0., 1000.**(1./3.), 10000)**3. # xys[1, :] = [calc_smoothpar_logistic2(x, iterate=True) for x in xys[0]] # numpy.save(os.path.join( # conf.__path__[0], "support_points_for_smoothpar_logistic2.npy"), xys) # Load the supporting points required for method `calc_smoothpar_logistic2`: confpath = conf.__path__[0] # type: ignore[attr-defined, name-defined] # pylint: disable=line-too-long xys = numpy.load(os.path.join(confpath, "support_points_for_smoothpar_logistic2.npy")) _cubic_interpolator_for_smoothpar_logistic2 = interpolate.interp1d( xys[0], xys[1], kind="cubic", fill_value="extrapolate" ) del xys