Bibliography

[1]

Richard G. Allen, Luis S. Pareira, Dirk Raes, and Martin Smith. Crop Evapotranspiration - Guidelines for Computing Crop Water Requirements. FAO - Food and Agriculture Organization of the United Nations, 1998. ISBN 978-9-251-04219-9. URL: http://www.fao.org/3/x0490e/x0490e00.htm.

[2]

ATV-DVWK. ATV-DVWK-M 504 - Verdunstung in Bezug zu Landnutzung, Bewuchs und Boden. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall, 2002. URL: https://webshop.dwa.de/de/merkblatt-atv-dvwk-m-504-september-2002.html.

[3]

Paul D. Bates, Matthew S. Horritt, and Timothy J. Fewtrell. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. Journal of Hydrology, 387(1-2):33–45, 2010. doi:10.1016/j.jhydrol.2010.03.027.

[4]

C. C. Brauer, A. J. Teuling, P. J. J. F. Torfs, and R. Uijlenhoet. The wageningen lowland runoff simulator (walrus): a lumped rainfall–runoff model for catchments with shallow groundwater. Geoscientific Model Development, 7(5):2313–2332, 2014. URL: https://gmd.copernicus.org/articles/7/2313/2014/, doi:10.5194/gmd-7-2313-2014.

[5]

R. H. Brooks and A. T. Corey. Properties of porous media affecting fluid flow. Journal of the Irrigation and Drainage Division, pages 61–90, 1966. doi:10.1061/JRCEA4.0000425.

[6]

Martyn P. Clark and Dimitri Kavetski. Ancient numerical daemons of conceptual hydrological modeling: 1. fidelity and efficiency of time stepping schemes. Water Resources Research, 2010. doi:10.1029/2009WR008894.

[7]

J. A. Cunge. On the subject of a flood propagation computation method (muskingum method). Journal of Hydraulic Research, 7:205–230, 1969. URL: https://www.tandfonline.com/doi/abs/10.1080/00221686909500264.

[8]

Gustavo A. M. de Almeida, Paul Bates, Jim E. Freer, and M. Souvignet. Improving the stability of a simple formulation of the shallow water equations for 2-d flood modeling. Water Resources Research, 2012. doi:10.1029/2011WR011570.

[9]

Robert E. Dickinson. Modeling evapotranspiration for three-dimensional global climate models. In Climate Processes and Climate Sensitivity, pages 58–72. American Geophysical Union (AGU), 1984. doi:10.1029/GM029p0058.

[10]

Markus Disse. Modellierung der Verdunstung und der Grundwasserneubildung in ebenen Einzugsgebieten. Universität Fridericiana zu Karlsruhe (TH), 1995.

[11]

M. Dowell and P. Jarratt. The “pegasus” method for computing the root of an equation. BIT Numerical Mathematics, 12:503–508, 1972. URL: https://link.springer.com/article/10.1007/BF01932959.

[12]

DVWK. Merkblatt DVWK-M 238 - Ermittlung der Verdunstung von Land- und Wasserflächen. Deutscher Verband für Wasserwirtschaft und Kulturbau e.V. -DVWK-, Bonn; Gesellschaft zur Förderung der Abwassertechnik e.V. -GFA-, Hennef, 1996.

[13]

DWD. Leitfäden für die Ausbildung im DWD. Volume Band 1. Deutscher Wetterdienst, 1987. ISBN 3-88148-236-9.

[14]

Simon Frey and Hubert Holzmann. A conceptual, distributed snow redistribution model. Hydrology and Earth System Sciences, 19(11):4517–4530, 2015. doi:10.5194/hess-19-4517-2015.

[15]

D. R. Grant. Comparison of evaporation from barley with penman estimates. Agricultural Meteorology, 15(1):49–60, 1975. doi:10.1016/0002-1571(75)90017-5.

[16]

Joakim Harlin. Hydrological modelling of extreme floods in Sweden. SMHI, 1992.

[17]

Bert Holtslag, Henk de Bruin, and A.P. Ulden. Estimation of the sensible heat flux from standard meteorological data for stability calculations during daytime. Air Pollution Modeling and its Application I, pages 401–407, 01 1981. doi:10.1007/978-1-4613-3344-9_26.

[18]

Sherwood B Idso and Ray D Jackson. Thermal radiation from the atmosphere. Journal of geophysical research, 74(23):5397–5403, 1969.

[19]

Harald Kling. Spatio-temporal modelling of the water balance of Austria. Institute of Water Management, Hydrology and Hydraulic Engineering, University of Natural Resources and Life Sciences, Vienna, 2006.

[20]

Harald Kling, Martin Fuchs, and Maria Paulin. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424-425:264–277, 2012. doi:10.1016/j.jhydrol.2012.01.011.

[21]

Harald Kling, Josef Fürst, and Hans Peter Nachtnebel. Spatio-temporal water balance danube–a methodology for the spatially distributed, seasonal water balance of the danube basin. Technical Report, Institute of Water Management, Hydrology and Hydraulic Engineering, University of Natural Resources and Life Sciences, Vienna, 2005.

[22]

Wencong Lai, Fred L. Ogden, Robert C. Steinke, and Cary A. Talbot. An efficient and guaranteed stable numerical method for continuous modeling of infiltration and redistribution with a shallow dynamic water table. Water Resources Research, 51(3):1514–1528, 2015. doi:10.1002/2014WR016487.

[23]

LEG. Das Wasserhaushaltsmodell LARSIM. LARSIM-Entwicklergemeinschaft - Hochwasserzentralen LUBW, BLfU, LfU RP, HLNUG, BAFU, 2020. URL: https://www.larsim.info/dokumentation/LARSIM-Dokumentation.pdf.

[24]

LEG. LARSIM-Hilfe. LARSIM-Entwicklergemeinschaft - Hochwasserzentralen LUBW, BLfU, LfU RP, HLNUG, BAFU, revision 233 edition, 2020. URL: https://larsim.info/larsimhilfe/hh_start.htm.

[25]

Göran Lindström, Barbro Johansson, Magnus Persson, Marie Gardelin, and Sten Bergström. Development and test of the distributed hbv-96 hydrological model. Journal of Hydrology, 201(1):272 – 288, 1997. doi:10.1016/S0022-1694(97)00041-3.

[26]

LUBW. Weiterentwicklung des Schneemodells und Vereinheitlichung der Energiebilanzansätze in Larsim. Ing.-Büro Dr.-Ing. Karl Ludwig im Auftrag der Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg, 2006.

[27]

LUBW. Zusätzliche LARSIM-Routinen zur Simulation der Schneedynamik, des Bodenwärmestroms und der Frostversiegelung. Ing.-Büro Dr.-Ing. Karl Ludwig im Auftrag der Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg, 2006.

[28]

LUBW & LUWG. Auswertung von Messungen aus dem Rain-on-Snow-Projekt der Universität Freiburg zur Verbesserung der Schneesimulation in LARSIM. HYDRON GmbH im Auftrag der LUBW und des LUWG, 2015.

[29]

Franz-Josef Löpmeier. Agrarmeteorologisches modell zur berechnung der aktuellen verdunstung (ambav). Technical Report, Deutscher Wetterdienst, 2014.

[30]

G. T. McCarthy. Flood Control. The Engineer School, Fort Belvoir, Virginia, 1940.

[31]

B. S. Minhas, K. S. Parikh, and T. N. Srinivasan. Toward the structure of a production function for wheat yields with dated inputs of irrigation water. Water Resources Research, 10(3):383–393, 1974. doi:10.1029/WR010i003p00383.

[32]

Howard Latimer Penman. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 193(1032):120–145, 1948.

[33]

Charles Perrin, Claude Michel, and Vazken Andréassian. Modèles hydrologiques du génie rural (gr). Cemagref, UR Hydrosystèmes et Bioprocédés, 2007.

[34]

J. Quast and G. Böhm. Ermittlung der realen Evapotranspiration von Niedermoorgebieten unter den hydroklimatischen Bedingungen Nordostdeutschlands am Beispiel des Rhinluchs. Leibniz Centre for Agricultural Landscape Research (ZALF), 1997.

[35]

William D Sellers. Physical climatology. The University of Chicago Press, 1960.

[36]

Cary A. Talbot and Fred L. Ogden. A method for computing infiltration and redistribution in a discretized moisture content domain. Water Resources Research, 2008. doi:10.1029/2008WR006815.

[37]

Thompson, I. A. Barrie, and M. Ayles. The Meteorological Office rainfall and evaporation calculation system: MORECS. Meteorological Office, London, 1981. OCLC: 59090884.

[38]

Ezio Todini. A mass conservative and water storage consistent variable parameter muskingum-cunge approach. Hydrology and Earth System Sciences, 11:1645–1659, 2007. doi:10.5194/hess-11-1645-2007.

[39]

Christoph Tyralla. HydPy - ein interaktiv nutzbares Framework zur Erstellung und Anwendung hydrologischer Modelle. Bundesanstalt für Gewässerkunde, 2013. doi:10.5675/BfG-1795.

[40]

Christoph Tyralla. Identifikation und Reduktion struktureller Unsicherheiten in hydrologischen Modellen. Ruhr-University Bochum, 2016. URL: https://hss-opus.ub.ruhr-uni-bochum.de/opus4/frontdoor/index/index/docId/5056.

[41]

Daniel Viviroli, Massimiliano Zappa, Joachim Gurtz, and Rolf Weingartner. An introduction to the hydrological modelling system prevah and its pre-and post-processing-tools. Environmental Modelling & Software, 24(10):1209–1222, 2009.

[42]

Wolfgang Weischet and Wilfried Endlicher. Einführung in die Allgemeine Klimatologie Physikalische und meteorologische Grundlagen. Teubner Studienbücher der Geographie, 1983. URL: https://www.zvab.com/9783519434047/Einf%C3%BChrung-Allgemeine-Klimatologie-Physikalische-meteorologische-3519434040/plp.

[43]

Mark S. Wigmosta, Lance W. Vail, and Dennis P. Lettenmaier. A distributed hydrology-vegetation model for complex terrain. Water Resources Research, 30(6):1665–1679, 1994. doi:10.1029/94WR00436.

[44]

R. Williams, J. Flood routing with variable travel time or variable storage coefficients. Transactions of the ASAE, 1969.

[45]

Ren-Jun Zhao. Flood forecasting method for humid regions of china. East China College of Hydraulic Engineering, Nanjing, China, 1977.