masktools¶
This module implements masking features to define which entries of
Parameter
or Sequence_
arrays are relevant and which are not.
Module masktools
implements the following members:
BaseMask
Base class for definingCustomMask
andDefaultMask
classes.
CustomMask
Mask that awaits allbool
values to be set manually.
DefaultMask
A mask with all entries beingTrue
of the same shape as its masterVariable
object.
IndexMask
A mask depending on a referenced index parameter containing integers.
Masks
Base class for handling groups of masks.
-
class
hydpy.core.masktools.
BaseMask
(array=None, **kwargs)[source]¶ Bases:
numpy.ndarray
Base class for defining
CustomMask
andDefaultMask
classes.
-
class
hydpy.core.masktools.
CustomMask
(array=None, **kwargs)[source]¶ Bases:
hydpy.core.masktools.BaseMask
Mask that awaits all
bool
values to be set manually.Class
CustomMask
is the most basic applicable mask and provides no special features, excepts that it allows itsbool
values to be defined manually. Use it when you require a masking behaviour that is not captured by an available mask.Like the more advanced masks,
CustomMask
can either work via Python’s descriptor protocol or can be applied directly, but is thought to be applied in the last way only:>>> from hydpy.core.masktools import CustomMask >>> mask1 = CustomMask([[True, False, False], ... [True, False, False]])
Note that calling any mask object (not only those of type
CustomMask
) returns a new mask, but does not change the old one (all masks are derived fromndarray
):>>> mask2 = mask1([[False, True, False], ... [False, True, False]]) >>> mask1 CustomMask([[ True, False, False], [ True, False, False]]) >>> mask2 CustomMask([[False, True, False], [False, True, False]])
All features of class
ndarray
thought forbool
values can be applied. Some useful examples:>>> mask3 = mask1 + mask2 >>> mask3 CustomMask([[ True, True, False], [ True, True, False]]) >>> mask3 ^ mask1 CustomMask([[False, True, False], [False, True, False]]) >>> ~mask3 CustomMask([[False, False, True], [False, False, True]]) >>> mask1 & mask2 CustomMask([[False, False, False], [False, False, False]])
Use the in operator to check of a mask defines a subset of another mask:
>>> mask1 in mask3 True >>> mask3 in mask1 False
-
class
hydpy.core.masktools.
DefaultMask
(variable: Optional[hydpy.core.typingtools.VariableProtocol] = None, **kwargs)[source]¶ Bases:
hydpy.core.masktools.BaseMask
A mask with all entries being
True
of the same shape as its masterVariable
object.See the documentation on class
CustomMask
for the basic usage of classDefaultMask
.The following example shows how
DefaultMask
can be applied via Python’s descriptor protocol, which should be the common situation:>>> from hydpy.core.parametertools import Parameter >>> from hydpy.core.masktools import DefaultMask >>> class Par1(Parameter): ... shape = (2, 3) ... defaultmask = DefaultMask() >>> Par1(None).defaultmask DefaultMask([[ True, True, True], [ True, True, True]]) >>> from hydpy import classname >>> classname(Par1.defaultmask) '_MaskDescriptor'
Alternatively, you can connect a
DefaultMask
with aVariable
object directly:>>> class Par2(Parameter): ... shape = (2,) >>> mask = DefaultMask(Par2(None)) >>> mask DefaultMask([ True, True])
-
variable
: hydpy.core.typingtools.VariableProtocol¶
-
classmethod
new
(variable: hydpy.core.typingtools.VariableProtocol, **kwargs)[source]¶ Return a new
DefaultMask
object associated with the givenVariable
object.
-
-
class
hydpy.core.masktools.
IndexMask
(variable: Optional[hydpy.core.typingtools.VariableProtocol] = None, **kwargs)[source]¶ Bases:
hydpy.core.masktools.DefaultMask
A mask depending on a referenced index parameter containing integers.
IndexMask
must be subclassed. See the masksComplete
andSoil
of base modelhland
for two concrete example classes, which are applied on thehland
specific parameter classesParameterComplete
andParameterSoil
. The documentation on the two parameter classes provides some application examples. Further, see the documentation on classCustomMask
for the basic usage of classDefaultMask
.-
variable
: hydpy.core.typingtools.VariableProtocol¶
-
classmethod
new
(variable: hydpy.core.typingtools.VariableProtocol, **kwargs)[source]¶ Return a new
IndexMask
object of the same shape as the parameter referenced byproperty
refindices
.Entries are only
True
, if the integer values of the respective entries of the referenced parameter are contained in theIndexMask
class attribute tuple RELEVANT_VALUES.Before calling new (explicitly or implicitely), one must prepare the variable returned by property
refindices
:>>> from hydpy.models.hland import * >>> parameterstep() >>> states.sm.mask Traceback (most recent call last): ... RuntimeError: The mask of parameter `sm` of element `?` cannot be determined as long as parameter `zonetype` is not prepared properly.
>>> nmbzones(4) >>> zonetype(FIELD, FOREST, ILAKE, GLACIER) >>> states.sm.mask Soil([ True, True, False, False])
If the shape of the
refindices
parameter is zero (which is actually not allowed forhland
), the returned mask is empty:>>> zonetype.shape = 0 >>> states.shape = 0 >>> states.sm.mask Soil([])
-
classmethod
get_refindices
(variable) → parametertools.Parameter[source]¶ Return the
Parameter
object for determining which entries ofIndexMask
areTrue
and which areFalse
.The given variable must be concrete
Variable
object, theIndexMask
is thought for.Needs to be overwritten by subclasses:
>>> from hydpy.core.parametertools import Parameter >>> from hydpy.core.masktools import IndexMask >>> class Par(Parameter): ... mask = IndexMask() >>> Par(None).mask Traceback (most recent call last): ... NotImplementedError: Function `get_refindices` of class `IndexMask` must be overridden, which is not the case for class `IndexMask`.
-
property
refindices
¶ Parameter
object for determining which entries ofIndexMask
areTrue
and which areFalse
.
-
property
relevantindices
¶ A
list
of all currently relevant indices, calculated as an intercection of the (constant) class attribute RELEVANT_VALUES and the (variable) propertyrefindices
.
-
-
class
hydpy.core.masktools.
Masks
[source]¶ Bases:
object
Base class for handling groups of masks.
Masks
subclasses are basically just containers, which are defined similar asSubParameters
andSubSequences
subclasses:>>> from hydpy.core.masktools import Masks >>> from hydpy.core.masktools import IndexMask, DefaultMask, CustomMask >>> class Masks(Masks): ... CLASSES = (IndexMask, ... DefaultMask) >>> masks = Masks()
The contained mask classes are available via attribute access in lower case letters:
>>> masks indexmask of module hydpy.core.masktools defaultmask of module hydpy.core.masktools >>> masks.indexmask is IndexMask True >>> "indexmask" in dir(masks) True
The in operator is supported:
>>> IndexMask in masks True >>> CustomMask in masks False >>> "mask" in masks Traceback (most recent call last): ... TypeError: The given value `mask` of type `str` is neither a Mask class nor a Mask instance.
Using item access, strings (in whatever case), mask classes, and mask objects are accepted:
>>> masks["IndexMask"] is IndexMask True >>> masks["indexmask"] is IndexMask True >>> masks[IndexMask] is IndexMask True >>> masks[CustomMask()] Traceback (most recent call last): ... RuntimeError: While trying to retrieve a mask based on key `CustomMask([])`, the following error occurred: The key does not define an available mask. >>> masks["test"] Traceback (most recent call last): ... RuntimeError: While trying to retrieve a mask based on key `'test'`, the following error occurred: The key does not define an available mask. >>> masks[1] Traceback (most recent call last): ... TypeError: While trying to retrieve a mask based on key `1`, the following error occurred: The given key is neither a `string` a `mask` type.
-
property
name
¶ masks
>>> from hydpy.core.masktools import Masks >>> Masks.CLASSES = () >>> Masks().name 'masks' >>> del Masks.CLASSES
-
property
-
class
hydpy.core.masktools.
NodeMasks
[source]¶ Bases:
hydpy.core.masktools.Masks
Masks
subclass for classNode
.At the moment, the purpose of class
NodeMasks
is to make the implementation ofModelSequence
andNodeSequence
more similar. It will become relevant for applications as soon as we support 1-dimensional node sequences.