masktools

This module implements masking features to define which entries of Parameter or Sequence_ arrays are relevant and which are not.

Module masktools implements the following members:


class hydpy.core.masktools.BaseMask(array=None, **kwargs)[source]

Bases: ndarray[Any, dtype[float64]]

Base class for defining CustomMask and DefaultMask classes.

name: str
classmethod array2mask(array=None, **kwargs)[source]

Create a new mask object based on the given ndarray and return it.

class hydpy.core.masktools.CustomMask(array=None, **kwargs)[source]

Bases: BaseMask

Mask that awaits all bool values to be set manually.

Class CustomMask is the most basic applicable mask and provides no special features, excepts that it allows its bool values to be defined manually. Use it when you require a masking behaviour that is not captured by an available mask.

Like the more advanced masks, CustomMask can either work via Python’s descriptor protocol or can be applied directly, but is thought to be applied in the last way only:

>>> from hydpy.core.masktools import CustomMask
>>> mask1 = CustomMask([[True, False, False],
...                     [True, False, False]])

Note that calling any mask object (not only those of type CustomMask) returns a new mask, but does not change the old one (all masks are derived from ndarray):

>>> mask2 = mask1([[False, True, False],
...                [False, True, False]])
>>> mask1
CustomMask([[ True, False, False],
            [ True, False, False]])
>>> mask2
CustomMask([[False,  True, False],
            [False,  True, False]])

All features of class ndarray thought for bool values can be applied. Some useful examples:

>>> mask3 = mask1 + mask2
>>> mask3
CustomMask([[ True,  True, False],
            [ True,  True, False]])
>>> mask3 ^ mask1
CustomMask([[False,  True, False],
            [False,  True, False]])
>>> ~mask3
CustomMask([[False, False,  True],
            [False, False,  True]])
>>> mask1 & mask2
CustomMask([[False, False, False],
            [False, False, False]])

Use the in operator to check of a mask defines a subset of another mask:

>>> mask1 in mask3
True
>>> mask3 in mask1
False
name: str = 'custommask'
class hydpy.core.masktools.DefaultMask(variable: VariableProtocol | None = None, **kwargs)[source]

Bases: BaseMask

A mask with all entries being True of the same shape as its master Variable object.

See the documentation on class CustomMask for the basic usage of class DefaultMask.

The following example shows how DefaultMask can be applied via Python’s descriptor protocol, which should be the common situation:

>>> from hydpy.core.parametertools import Parameter
>>> from hydpy.core.masktools import DefaultMask
>>> class Par1(Parameter):
...     shape = (2, 3)
...     defaultmask = DefaultMask()
>>> Par1(None).defaultmask
DefaultMask([[ True,  True,  True],
             [ True,  True,  True]])
>>> from hydpy import classname
>>> classname(Par1.defaultmask)
'_MaskDescriptor'

Alternatively, you can connect a DefaultMask with a Variable object directly:

>>> class Par2(Parameter):
...     shape = (2,)
>>> mask = DefaultMask(Par2(None))
>>> mask
DefaultMask([ True,  True])
variable: VariableProtocol
classmethod new(variable: VariableProtocol, **kwargs)[source]

Return a new DefaultMask object associated with the given Variable object.

name: str = 'defaultmask'
class hydpy.core.masktools.IndexMask(variable: VariableProtocol | None = None, **kwargs)[source]

Bases: DefaultMask

A mask depending on a referenced index parameter containing integers.

IndexMask must be subclassed. See the masks Complete and Soil of base model hland for two concrete example classes, which are applied on the hland specific parameter classes ParameterComplete and ParameterSoil. The documentation on the two parameter classes provides some application examples. Further, see the documentation on class CustomMask for the basic usage of class DefaultMask.

RELEVANT_VALUES: Tuple[int, ...]
variable: VariableProtocol
classmethod new(variable: VariableProtocol, **kwargs)[source]

Return a new IndexMask object of the same shape as the parameter referenced by property refindices.

Entries are only True, if the integer values of the respective entries of the referenced parameter are contained in the IndexMask class attribute tuple RELEVANT_VALUES.

Before calling new (explicitly or implicitely), one must prepare the variable returned by property refindices:

>>> from hydpy.models.hland import *
>>> parameterstep()
>>> states.sm.mask
Traceback (most recent call last):
...
RuntimeError: The mask of parameter `sm` of element `?` cannot be determined as long as parameter `zonetype` is not prepared properly.
>>> nmbzones(4)
>>> zonetype(FIELD, FOREST, ILAKE, GLACIER)
>>> states.sm.mask
Soil([ True,  True, False, False])

If the shape of the refindices parameter is zero (which is actually not allowed for hland), the returned mask is empty:

>>> zonetype.shape = 0
>>> states.shape = 0
>>> states.sm.mask
Soil([])
classmethod get_refindices(variable) parametertools.Parameter[source]

Return the Parameter object for determining which entries of IndexMask are True and which are False.

The given variable must be concrete Variable object, the IndexMask is thought for.

Needs to be overwritten by subclasses:

>>> from hydpy.core.parametertools import Parameter
>>> from hydpy.core.masktools import IndexMask
>>> class Par(Parameter):
...     mask = IndexMask()
>>> Par(None).mask
Traceback (most recent call last):
...
NotImplementedError: Function `get_refindices` of class `IndexMask` must be overridden, which is not the case for class `IndexMask`.
property refindices

Parameter object for determining which entries of IndexMask are True and which are False.

property relevantindices: Set[int]

A list of all currently relevant indices, calculated as an intercection of the (constant) class attribute RELEVANT_VALUES and the (variable) property refindices.

name: str = 'indexmask'
class hydpy.core.masktools.Masks[source]

Bases: object

Base class for handling groups of masks.

Masks subclasses are basically just containers, which are defined similar as SubParameters and SubSequences subclasses:

>>> from hydpy.core.masktools import Masks
>>> from hydpy.core.masktools import IndexMask, DefaultMask, CustomMask
>>> class Masks(Masks):
...     CLASSES = (IndexMask,
...                DefaultMask)
>>> masks = Masks()

The contained mask classes are available via attribute access in lower case letters:

>>> masks
indexmask of module hydpy.core.masktools
defaultmask of module hydpy.core.masktools
>>> masks.indexmask is IndexMask
True
>>> "indexmask" in dir(masks)
True

The in operator is supported:

>>> IndexMask in masks
True
>>> CustomMask in masks
False
>>> "mask" in masks
Traceback (most recent call last):
...
TypeError: The given value `mask` of type `str` is neither a Mask class nor a Mask instance.

Using item access, strings (in whatever case), mask classes, and mask objects are accepted:

>>> masks["IndexMask"] is IndexMask
True
>>> masks["indexmask"] is IndexMask
True
>>> masks[IndexMask] is IndexMask
True
>>> masks[CustomMask()]
Traceback (most recent call last):
...
RuntimeError: While trying to retrieve a mask based on key `CustomMask([])`, the following error occurred: The key does not define an available mask.
>>> masks["test"]
Traceback (most recent call last):
...
RuntimeError: While trying to retrieve a mask based on key `'test'`, the following error occurred: The key does not define an available mask.
>>> masks[1]
Traceback (most recent call last):
...
TypeError: While trying to retrieve a mask based on key `1`, the following error occurred: The given key is neither a `string` a `mask` type.
property name: Literal['masks']

masks

>>> from hydpy.core.masktools import Masks
>>> Masks().name
'masks'
class hydpy.core.masktools.NodeMasks[source]

Bases: Masks

Masks subclass for class Node.

At the moment, the purpose of class NodeMasks is to make the implementation of ModelSequence and NodeSequence more similar. It will become relevant for applications as soon as we support 1-dimensional node sequences.