HydPy-Dam (base model)¶
The HydPy-Dam base model provides features to implement water barriers like dams, weirs, lakes, or polders.
Method Features¶
- class hydpy.models.dam.dam_model.Model[source]¶
- Bases: - ELSModel- HydPy-Dam (base model) - The following “receiver update methods” are called in the given sequence before performing a simulation step:
- Pic_TotalRemoteDischarge_V1Update the receiver sequence- TotalRemoteDischarge.
- Update_LoggedTotalRemoteDischarge_V1Log a new entry of the discharge at a cross-section far downstream.
- Pick_LoggedOuterWaterLevel_V1Update the receiver sequence- LoggedOuterWaterLevel.
- Pick_LoggedRemoteWaterLevel_V1Update the receiver sequence- LoggedRemoteWaterLevel.
- Pic_LoggedRequiredRemoteRelease_V1Update the receiver sequence- LoggedRequiredRemoteRelease.
- Pic_LoggedRequiredRemoteRelease_V2Update the receiver sequence- LoggedRequiredRemoteRelease.
- Calc_RequiredRemoteRelease_V2Get the required remote release of the last simulation step.
- Pic_LoggedAllowedRemoteRelief_V1Update the receiver sequence- LoggedAllowedRemoteRelief.
- Calc_AllowedRemoteRelief_V1Get the allowed remote relief of the last simulation step.
 
- The following “inlet update methods” are called in the given sequence at the beginning of each simulation step:
- Calc_Precipitation_V1If available, let a submodel that complies with the- PrecipModel_V2interface determine precipitation.
- Calc_AdjustedPrecipitation_V1Adjust the given precipitation.
- Calc_PotentialEvaporation_V1If available, let a submodel that complies with the- PETModel_V1interface determine potential evaporation.
- Calc_AdjustedEvaporation_V1Adjust the given potential evaporation.
- Calc_ActualEvaporation_V1Calculate the actual evaporation.
- Pic_Inflow_V1Update the inlet sequence- Inflow.
- Pic_Inflow_V2Update the inlet sequence- Inflow.
- Calc_NaturalRemoteDischarge_V1Estimate the natural discharge of a cross-section far downstream based on the last few simulation steps.
- Calc_RemoteDemand_V1Estimate the discharge demand of a cross-section far downstream.
- Calc_RemoteFailure_V1Estimate the shortfall of actual discharge under the required discharge of a cross section far downstream.
- Calc_RequiredRemoteRelease_V1Guess the required release necessary to not fall below the threshold value at a cross section far downstream with a certain level of certainty.
- Calc_RequiredRelease_V1Calculate the total water release (immediately and far downstream) required for reducing drought events.
- Calc_RequiredRelease_V2Calculate the water release (immediately downstream) required for reducing drought events.
- Calc_TargetedRelease_V1Calculate the targeted water release for reducing drought events, taking into account both the required water release and the actual inflow into the dam.
 
- The following methods define the relevant components of a system of ODE equations (e.g. direct runoff):
- Pic_Inflow_V1Update the inlet sequence- Inflow.
- Pic_Inflow_V2Update the inlet sequence- Inflow.
- Calc_WaterLevel_V1Determine the water level based on an interpolation approach approximating the relationship between water volume and water level.
- Calc_OuterWaterLevel_V1Get the water level directly below the dam of the last simulation step.
- Calc_RemoteWaterLevel_V1Get the water level at a remote location of the last simulation step.
- Calc_WaterLevelDifference_V1Calculate the difference between the inner and the outer water level.
- Calc_EffectiveWaterLevelDifference_V1Calculate the “effective” difference between the inner and the outer water level above a threshold level.
- Calc_SurfaceArea_V1Determine the surface area based on an interpolation approach approximating the relationship between the water level and the surface area.
- Calc_AllowedDischarge_V1Calculate the maximum discharge not leading to exceedance of the allowed water level drop.
- Calc_AllowedDischarge_V2Calculate the maximum discharge not leading to exceedance of the allowed water level drop.
- Calc_ActualRelease_V1Calculate the actual water release that can be supplied by the dam considering the targeted release and the given water level.
- Calc_ActualRelease_V2Calculate the actual water release in aggrement with the allowed release not causing harm downstream and the actual water volume.
- Calc_ActualRelease_V3Calculate an actual water release that tries to change the water storage into the direction of the actual target volume without violating the required minimum and the allowed maximum flow.
- Calc_PossibleRemoteRelief_V1Calculate the highest possible water release that can be routed to a remote location based on an interpolation approach approximating the relationship between possible release and water stage.
- Calc_ActualRemoteRelief_V1Calculate the actual amount of water released to a remote location to relieve the dam during high flow conditions.
- Calc_ActualRemoteRelease_V1Calculate the actual remote water release that can be supplied by the dam considering the required remote release and the given water level.
- Update_ActualRemoteRelief_V1Constrain the actual relief discharge to a remote location.
- Update_ActualRemoteRelease_V1Constrain the actual release (supply discharge) to a remote location.
- Calc_FloodDischarge_V1Calculate the discharge during and after a flood event based on seasonally varying interpolation approaches approximating the relationship(s) between discharge and water stage.
- Calc_MaxForcedDischarge_V1Approximate the currently highest possible forced water release through structures as pumps based on seasonally varying interpolation approaches that take the water level difference as input.
- Calc_MaxFreeDischarge_V1Approximate the currently highest possible free water release through structures as sluices based on seasonally varying interpolation approaches that take the water level difference as input.
- Calc_ForcedDischarge_V1Calculate the actual forced water release through structures as pumps to prevent a too-high inner water level if a maximum water level at a remote location is not violated.
- Calc_FreeDischarge_V1Calculate the actual water flow through a hydraulic structure like a (flap) sluice that generally depends on the water level gradient but can be suppressed to stop releasing water if a maximum water level at a remote location is violated.
- Calc_Outflow_V1Calculate the total outflow of the dam.
- Calc_Outflow_V2Calculate the total outflow of the dam, taking the allowed water discharge into account.
- Calc_Outflow_V3Take the forced discharge as the only outflow.
- Calc_Outflow_V4Take the free discharge as the only outflow.
- Calc_Outflow_V5Calculate the total outflow as the sum of free and forced discharge.
 
- The following methods define the complete equations of an ODE system (e.g. change in storage of fast water due to effective precipitation and direct runoff):
- Update_WaterVolume_V1Update the actual water volume.
- Update_WaterVolume_V2Update the actual water volume.
- Update_WaterVolume_V3Update the actual water volume.
- Update_WaterVolume_V4Update the actual water volume.
 
- The following “outlet update methods” are called in the given sequence at the end of each simulation step:
- Pass_Outflow_V1Update the outlet link sequence- Q.
- Update_LoggedOutflow_V1Log a new entry of discharge at a cross section far downstream.
- Pass_ActualRemoteRelease_V1Update the outlet link sequence- S.
- Pass_ActualRemoteRelief_V1Update the outlet link sequence- R.
 
- The following “sender update methods” are called in the given sequence after performing a simulation step:
- Calc_MissingRemoteRelease_V1Calculate the portion of the required remote demand that could not be met by the actual discharge release.
- Pass_MissingRemoteRelease_V1Update the outlet link sequence- D.
- Calc_AllowedRemoteRelief_V2Calculate the allowed maximum relief that another location is allowed to discharge into the dam.
- Pass_AllowedRemoteRelief_V1Update the outlet link sequence- R.
- Calc_RequiredRemoteSupply_V1Calculate the supply required from another location.
- Pass_RequiredRemoteSupply_V1Update the outlet link sequence- S.
 
- The following “additional methods” might be called by one or more of the other methods or are meant to be directly called by the user:
- Fix_Min1_V1Apply function- smooth_min1()without risking negative results.
 
 - precipmodel¶
- Optional submodel that complies with the following interface: PrecipModel_V2. 
 - precipmodel_is_mainmodel¶
 - precipmodel_typeid¶
 - pemodel¶
- Optional submodel that complies with the following interface: PETModel_V1. 
 - pemodel_is_mainmodel¶
 - pemodel_typeid¶
 - REUSABLE_METHODS: ClassVar[tuple[type[ReusableMethod], ...]] = ()¶
 
- class hydpy.models.dam.dam_model.Calc_Precipitation_V1[source]¶
- Bases: - Method- If available, let a submodel that complies with the - PrecipModel_V2interface determine precipitation.- Calculates the flux sequence:
 - Examples: - We use - dam_v001as an example:- >>> from hydpy.models.dam_v001 import * >>> parameterstep() - Without a submodel, - Calc_Precipitation_V1generally sets precipitation to zero:- >>> model.calc_precipitation_v1() >>> fluxes.precipitation precipitation(0.0) - Otherwise, it triggers the determination and queries the resulting value from the available submodel: - >>> surfacearea(2.0) >>> with model.add_precipmodel_v2("meteo_precip_io"): ... precipitationfactor(1.1) ... inputs.precipitation = 3.0 >>> model.calc_precipitation_v1() >>> fluxes.precipitation precipitation(3.3) 
- class hydpy.models.dam.dam_model.Calc_AdjustedPrecipitation_V1[source]¶
- Bases: - Method- Adjust the given precipitation. - Requires the control parameter:
- Requires the derived parameter:
- Requires the flux sequence:
- Calculates the flux sequence:
- Basic equation:
- \(AdjustedPrecipitation = InputFactor \cdot CorrectionPrecipitation \cdot Precipitation\) 
 - Example: - >>> from hydpy.models.dam import * >>> simulationstep("1h") >>> parameterstep() >>> surfacearea(36.0) >>> correctionprecipitation(1.25) >>> derived.seconds.update() >>> derived.inputfactor.update() >>> fluxes.precipitation = 2.0 >>> model.calc_adjustedprecipitation_v1() >>> fluxes.adjustedprecipitation adjustedprecipitation(25.0) 
- class hydpy.models.dam.dam_model.Calc_PotentialEvaporation_V1[source]¶
- Bases: - Method- If available, let a submodel that complies with the - PETModel_V1interface determine potential evaporation.- Calculates the flux sequence:
 - Examples: - We use - dam_v001as an example:- >>> from hydpy.models.dam_v001 import * >>> parameterstep() - Without a submodel, - Calc_PotentialEvaporation_V1generally sets potential evaporation to zero:- >>> model.calc_potentialevaporation_v1() >>> fluxes.potentialevaporation potentialevaporation(0.0) - Otherwise, it triggers the determination and queries the resulting value from the available submodel: - >>> surfacearea(2.0) >>> with model.add_pemodel_v1("evap_ret_io"): ... evapotranspirationfactor(1.1) ... inputs.referenceevapotranspiration = 3.0 >>> model.calc_potentialevaporation_v1() >>> fluxes.potentialevaporation potentialevaporation(3.3) 
- class hydpy.models.dam.dam_model.Calc_AdjustedEvaporation_V1[source]¶
- Bases: - Method- Adjust the given potential evaporation. - Requires the control parameters:
- Requires the derived parameter:
- Requires the flux sequence:
- Updates the log sequence:
- Calculates the flux sequence:
- Basic equation:
- \(AdjustedEvaporation = WeightEvaporation \cdot InputFactor \cdot CorrectionEvaporation \cdot PotentialEvaporation + (1 - WeightEvaporation) \cdot LoggedAdjustedEvaporation\) 
 - Examples: - Besides transforming units (mm/T to m³/s), method - Calc_AdjustedEvaporation_V1modifies the given potential evaporation values in two ways. First, it increases or reduces its general level via parameter- CorrectionEvaporationand, second, it delays and damps its variability via parameter- WeightEvaporation. We begin with the first functionality by setting the correction factor to 1.25 and the weighting factor to 1.0:- >>> from hydpy.models.dam import * >>> simulationstep("1h") >>> parameterstep("1h") >>> surfacearea(36.0) >>> correctionevaporation(1.25) >>> weightevaporation(1.0) >>> derived.seconds.update() >>> derived.inputfactor.update() >>> fluxes.potentialevaporation = 2.0 >>> logs.loggedadjustedevaporation = 20.0 >>> model.calc_adjustedevaporation_v1() >>> fluxes.adjustedevaporation adjustedevaporation(25.0) - Note that method - Calc_AdjustedEvaporation_V1also updates the log sequence- LoggedAdjustedEvaporationwith the same value as flux sequence- AdjustedEvaporation:- >>> logs.loggedadjustedevaporation loggedadjustedevaporation(25.0) - Setting the weighting factor to a value smaller one activates the damping-delay mechanism. A value of 0.6 implies a weighting of 60 % of the “new” evaporation value (here: 2.0 mm/h or 25 m³/s) and of 40 % of the “old” evaporation value (here: 1.6 mm/h or 20 m³/s): - >>> weightevaporation(0.6) >>> logs.loggedadjustedevaporation = 20.0 >>> model.calc_adjustedevaporation_v1() >>> fluxes.adjustedevaporation adjustedevaporation(23.0) >>> logs.loggedadjustedevaporation loggedadjustedevaporation(23.0) 
- class hydpy.models.dam.dam_model.Calc_ActualEvaporation_V1[source]¶
- Bases: - Method- Calculate the actual evaporation. - Requires the control parameter:
- Requires the derived parameter:
- Requires the factor sequence:
- Requires the flux sequence:
- Calculates the flux sequence:
- Basic equation:
- \(ActualEvaporation = AdjustedEvaporation \cdot smooth_{logistic1}(ThresholdEvaporation - WaterLevel, SmoothParEvaporation)\) 
- Used auxiliary method:
- smooth_logistic1()
 - Examples: - First, we prepare a - UnitTestobject to illustrate the relationship between the water level and actual evaporation for different settings:- >>> from hydpy.models.dam import * >>> parameterstep() >>> fluxes.adjustedevaporation = 2.0 >>> from hydpy import UnitTest >>> test = UnitTest(model, model.calc_actualevaporation_v1, ... last_example=10, ... parseqs=(factors.waterlevel, ... fluxes.actualevaporation)) >>> test.nexts.waterlevel = [value / 1000.0 for value in range(-1, 9)] - The most intuitive way to configure method - Calc_ActualEvaporation_V1is to set- WaterLevelMinimumThresholdand- WaterLevelMinimumToleranceto zero. Then, there is a sharp transition between zero and potential evaporation around a water level of 0 m:- >>> thresholdevaporation(0.0) >>> toleranceevaporation(0.0) >>> derived.smoothparevaporation.update() - >>> test() | ex. | waterlevel | actualevaporation | ---------------------------------------- | 1 | -0.001 | 0.0 | | 2 | 0.0 | 1.0 | | 3 | 0.001 | 2.0 | | 4 | 0.002 | 2.0 | | 5 | 0.003 | 2.0 | | 6 | 0.004 | 2.0 | | 7 | 0.005 | 2.0 | | 8 | 0.006 | 2.0 | | 9 | 0.007 | 2.0 | | 10 | 0.008 | 2.0 | - For numerical efficiency (and more natural transitions), it is preferable to set - WaterLevelMinimumToleranceto a value larger than zero. Here, we set it to 1 mm and adjust- WaterLevelMinimumThresholdso that the actual evaporation values are (at least for the shown precision) zero below a water level of 0 mm:- >>> thresholdevaporation(0.004) >>> toleranceevaporation(0.001) >>> derived.smoothparevaporation.update() >>> test() | ex. | waterlevel | actualevaporation | ---------------------------------------- | 1 | -0.001 | 0.0 | | 2 | 0.0 | 0.0 | | 3 | 0.001 | 0.000002 | | 4 | 0.002 | 0.000204 | | 5 | 0.003 | 0.02 | | 6 | 0.004 | 1.0 | | 7 | 0.005 | 1.98 | | 8 | 0.006 | 1.999796 | | 9 | 0.007 | 1.999998 | | 10 | 0.008 | 2.0 | 
- class hydpy.models.dam.dam_model.Pic_Inflow_V1[source]¶
- Bases: - Method- Update the inlet sequence - Inflow.
- class hydpy.models.dam.dam_model.Pic_Inflow_V2[source]¶
- Bases: - Method- Update the inlet sequence - Inflow.
- class hydpy.models.dam.dam_model.Pic_TotalRemoteDischarge_V1[source]¶
- Bases: - Method- Update the receiver sequence - TotalRemoteDischarge.- Requires the receiver sequence:
- Calculates the flux sequence:
- Basic equation:
- \(TotalRemoteDischarge = Q\) 
 
- class hydpy.models.dam.dam_model.Pick_LoggedOuterWaterLevel_V1[source]¶
- Bases: - Method- Update the receiver sequence - LoggedOuterWaterLevel.- Requires the receiver sequence:
- Calculates the log sequence:
- Basic equation:
- \(LoggedOuterWaterLevel = OWL\) 
 
- class hydpy.models.dam.dam_model.Pick_LoggedRemoteWaterLevel_V1[source]¶
- Bases: - Method- Update the receiver sequence - LoggedRemoteWaterLevel.- Requires the receiver sequence:
- Calculates the log sequence:
- Basic equation:
- \(LoggedRemoteWaterLevel = RWL\) 
 
- class hydpy.models.dam.dam_model.Pic_LoggedRequiredRemoteRelease_V1[source]¶
- Bases: - Method- Update the receiver sequence - LoggedRequiredRemoteRelease.- Requires the receiver sequence:
- Calculates the log sequence:
- Basic equation:
- \(LoggedRequiredRemoteRelease = D\) 
 
- class hydpy.models.dam.dam_model.Pic_LoggedRequiredRemoteRelease_V2[source]¶
- Bases: - Method- Update the receiver sequence - LoggedRequiredRemoteRelease.- Requires the receiver sequence:
- Calculates the log sequence:
- Basic equation:
- \(LoggedRequiredRemoteRelease = S\) 
 
- class hydpy.models.dam.dam_model.Pic_Exchange_V1[source]¶
- Bases: - Method- Update the inlet sequence - Exchange.- Basic equation:
- \(Exchange = \sum E_{inlets}\) 
 
- class hydpy.models.dam.dam_model.Pic_LoggedAllowedRemoteRelief_V1[source]¶
- Bases: - Method- Update the receiver sequence - LoggedAllowedRemoteRelief.- Requires the receiver sequence:
- Calculates the log sequence:
- Basic equation:
- \(LoggedAllowedRemoteRelief = R\) 
 
- class hydpy.models.dam.dam_model.Update_LoggedTotalRemoteDischarge_V1[source]¶
- Bases: - Method- Log a new entry of the discharge at a cross-section far downstream. - Requires the control parameter:
- Requires the flux sequence:
- Updates the log sequence:
 - Example: - The following example shows that method - Update_LoggedTotalRemoteDischarge_V1moves the three memorised values successively to the right and stores the respective new value on the bare left position:- >>> from hydpy.models.dam import * >>> parameterstep() >>> nmblogentries(3) >>> logs.loggedtotalremotedischarge = 0.0 >>> from hydpy import UnitTest >>> test = UnitTest(model, model.update_loggedtotalremotedischarge_v1, ... last_example=4, ... parseqs=(fluxes.totalremotedischarge, ... logs.loggedtotalremotedischarge)) >>> test.nexts.totalremotedischarge = [1.0, 3.0, 2.0, 4.0] >>> del test.inits.loggedtotalremotedischarge >>> test() | ex. | totalremotedischarge | loggedtotalremotedischarge | --------------------------------------------------------------------- | 1 | 1.0 | 1.0 0.0 0.0 | | 2 | 3.0 | 3.0 1.0 0.0 | | 3 | 2.0 | 2.0 3.0 1.0 | | 4 | 4.0 | 4.0 2.0 3.0 | 
- class hydpy.models.dam.dam_model.Calc_WaterLevel_V1[source]¶
- Bases: - Method- Determine the water level based on an interpolation approach approximating the relationship between water volume and water level. - Requires the control parameter:
- Requires the state sequence:
- Calculates the factor sequence:
 - Example: - We prepare a straightforward relationship based on a single neuron in the hidden layer: - >>> from hydpy.models.dam import * >>> parameterstep() >>> watervolume2waterlevel( ... ANN(nmb_inputs=1, nmb_neurons=(1,), nmb_outputs=1, ... weights_input=0.5, weights_output=1.0, ... intercepts_hidden=0.0, intercepts_output=-0.5)) - At least in the water volume range used in the following examples, the shape of the relationship looks acceptable: - >>> from hydpy import UnitTest >>> test = UnitTest( ... model, model.calc_waterlevel_v1, ... last_example=10, ... parseqs=(states.watervolume, factors.waterlevel)) >>> test.nexts.watervolume = range(10) >>> test() | ex. | watervolume | waterlevel | ---------------------------------- | 1 | 0.0 | 0.0 | | 2 | 1.0 | 0.122459 | | 3 | 2.0 | 0.231059 | | 4 | 3.0 | 0.317574 | | 5 | 4.0 | 0.380797 | | 6 | 5.0 | 0.424142 | | 7 | 6.0 | 0.452574 | | 8 | 7.0 | 0.470688 | | 9 | 8.0 | 0.482014 | | 10 | 9.0 | 0.489013 | - Larger neural networks or piecewise polynomials allow for more realistic approximations of measured relationships between water volume and water level. 
- class hydpy.models.dam.dam_model.Calc_OuterWaterLevel_V1[source]¶
- Bases: - Method- Get the water level directly below the dam of the last simulation step. - Requires the log sequence:
- Calculates the factor sequence:
- Basic equation:
- \(OuterWaterLevel = LoggedOuterWaterLevel\) 
 - Example: - >>> from hydpy.models.dam import * >>> parameterstep() >>> logs.loggedouterwaterlevel = 2.0 >>> model.calc_outerwaterlevel_v1() >>> factors.outerwaterlevel outerwaterlevel(2.0) 
- class hydpy.models.dam.dam_model.Calc_RemoteWaterLevel_V1[source]¶
- Bases: - Method- Get the water level at a remote location of the last simulation step. - Requires the log sequence:
- Calculates the factor sequence:
- Basic equation:
- \(RemoteWaterLevel = LoggedRemoteWaterLevel\) 
 - Example: - >>> from hydpy.models.dam import * >>> parameterstep() >>> logs.loggedremotewaterlevel = 2.0 >>> model.calc_remotewaterlevel_v1() >>> factors.remotewaterlevel remotewaterlevel(2.0) 
- class hydpy.models.dam.dam_model.Calc_WaterLevelDifference_V1[source]¶
- Bases: - Method- Calculate the difference between the inner and the outer water level. - Requires the factor sequences:
- Calculates the factor sequence:
 - Example: - >>> from hydpy.models.dam import * >>> parameterstep() >>> factors.waterlevel = 5.0 >>> factors.outerwaterlevel = 3.0 >>> model.calc_waterleveldifference_v1() >>> factors.waterleveldifference waterleveldifference(2.0) 
- class hydpy.models.dam.dam_model.Calc_EffectiveWaterLevelDifference_V1[source]¶
- Bases: - Method- Calculate the “effective” difference between the inner and the outer water level above a threshold level. - Requires the control parameter:
- Requires the derived parameter:
- Requires the factor sequences:
- Calculates the factor sequence:
- Basic equation:
- \[\begin{split}EffectiveWaterLevelDifference = h_1 - h_2 \\ \\ h_1 = f_{smooth \, max1}(WaterLevel, \, CrestLevelThreshold, \, CrestLevelSmoothPar) \\ \\ h_2 = f_{smooth \, max2}(OuterWaterLevel, \, CrestLevelThreshold, \, CrestLevelSmoothPar)\end{split}\]
- Used auxiliary method:
- smooth_max1()
 - Examples: - We prepare a - UnitTestobject to illustrate how the effective water level difference depends on the inner and the outer water level:- >>> from hydpy.models.dam import * >>> parameterstep() >>> from hydpy import UnitTest >>> test = UnitTest(model, model.calc_effectivewaterleveldifference_v1, ... last_example=21, ... parseqs=(factors.waterlevel, ... factors.outerwaterlevel, ... factors.effectivewaterleveldifference)) >>> test.nexts.waterlevel = numpy.linspace(3.15, 3.35, 21) >>> test.nexts.outerwaterlevel = numpy.linspace(3.05, 3.25, 21) - When setting - CrestLevelToleranceto zero,- EffectiveWaterLevelDifferenceis identical to the water level difference above the weir’s crest:- >>> crestlevel(3.2) >>> crestleveltolerance(0.0) >>> derived.crestlevelsmoothpar.update() >>> test() | ex. | waterlevel | outerwaterlevel | effectivewaterleveldifference | ---------------------------------------------------------------------- | 1 | 3.15 | 3.05 | 0.0 | | 2 | 3.16 | 3.06 | 0.0 | | 3 | 3.17 | 3.07 | 0.0 | | 4 | 3.18 | 3.08 | 0.0 | | 5 | 3.19 | 3.09 | 0.0 | | 6 | 3.2 | 3.1 | 0.0 | | 7 | 3.21 | 3.11 | 0.01 | | 8 | 3.22 | 3.12 | 0.02 | | 9 | 3.23 | 3.13 | 0.03 | | 10 | 3.24 | 3.14 | 0.04 | | 11 | 3.25 | 3.15 | 0.05 | | 12 | 3.26 | 3.16 | 0.06 | | 13 | 3.27 | 3.17 | 0.07 | | 14 | 3.28 | 3.18 | 0.08 | | 15 | 3.29 | 3.19 | 0.09 | | 16 | 3.3 | 3.2 | 0.1 | | 17 | 3.31 | 3.21 | 0.1 | | 18 | 3.32 | 3.22 | 0.1 | | 19 | 3.33 | 3.23 | 0.1 | | 20 | 3.34 | 3.24 | 0.1 | | 21 | 3.35 | 3.25 | 0.1 | - For more natural transitions (and also for computational efficiency), it is preferable to define a tolerance value larger than zero. We set - CrestLevelToleranceto 10 mm:- >>> crestleveltolerance(0.01) >>> derived.crestlevelsmoothpar.update() >>> test() | ex. | waterlevel | outerwaterlevel | effectivewaterleveldifference | ---------------------------------------------------------------------- | 1 | 3.15 | 3.05 | 0.001779 | | 2 | 3.16 | 3.06 | 0.002805 | | 3 | 3.17 | 3.07 | 0.004364 | | 4 | 3.18 | 3.08 | 0.006658 | | 5 | 3.19 | 3.09 | 0.009896 | | 6 | 3.2 | 3.1 | 0.014236 | | 7 | 3.21 | 3.11 | 0.019728 | | 8 | 3.22 | 3.12 | 0.026285 | | 9 | 3.23 | 3.13 | 0.033701 | | 10 | 3.24 | 3.14 | 0.041703 | | 11 | 3.25 | 3.15 | 0.05 | | 12 | 3.26 | 3.16 | 0.058297 | | 13 | 3.27 | 3.17 | 0.066299 | | 14 | 3.28 | 3.18 | 0.073715 | | 15 | 3.29 | 3.19 | 0.080272 | | 16 | 3.3 | 3.2 | 0.085764 | | 17 | 3.31 | 3.21 | 0.090104 | | 18 | 3.32 | 3.22 | 0.093342 | | 19 | 3.33 | 3.23 | 0.095636 | | 20 | 3.34 | 3.24 | 0.097195 | | 21 | 3.35 | 3.25 | 0.098221 | - Swapping the inner and outer water levels changes only the calculated difference’s signs: - >>> test.nexts.waterlevel, test.nexts.outerwaterlevel = ( ... test.nexts.outerwaterlevel, test.nexts.waterlevel) >>> test() | ex. | waterlevel | outerwaterlevel | effectivewaterleveldifference | ---------------------------------------------------------------------- | 1 | 3.05 | 3.15 | -0.001779 | | 2 | 3.06 | 3.16 | -0.002805 | | 3 | 3.07 | 3.17 | -0.004364 | | 4 | 3.08 | 3.18 | -0.006658 | | 5 | 3.09 | 3.19 | -0.009896 | | 6 | 3.1 | 3.2 | -0.014236 | | 7 | 3.11 | 3.21 | -0.019728 | | 8 | 3.12 | 3.22 | -0.026285 | | 9 | 3.13 | 3.23 | -0.033701 | | 10 | 3.14 | 3.24 | -0.041703 | | 11 | 3.15 | 3.25 | -0.05 | | 12 | 3.16 | 3.26 | -0.058297 | | 13 | 3.17 | 3.27 | -0.066299 | | 14 | 3.18 | 3.28 | -0.073715 | | 15 | 3.19 | 3.29 | -0.080272 | | 16 | 3.2 | 3.3 | -0.085764 | | 17 | 3.21 | 3.31 | -0.090104 | | 18 | 3.22 | 3.32 | -0.093342 | | 19 | 3.23 | 3.33 | -0.095636 | | 20 | 3.24 | 3.34 | -0.097195 | | 21 | 3.25 | 3.35 | -0.098221 | 
- class hydpy.models.dam.dam_model.Calc_SurfaceArea_V1[source]¶
- Bases: - Method- Determine the surface area based on an interpolation approach approximating the relationship between the water level and the surface area. - Requires the control parameter:
- Requires the state sequence:
- Calculates the aide sequence:
- Basic equation:
- \(SurfaceArea = \frac{dWaterVolume}{WaterLevel}\) 
 - Example: - Method - Calc_SurfaceArea_V1relies on the identical neural network as method- Calc_WaterLevel_V1. Therefore, we reuse the same network configuration:- >>> from hydpy.models.dam import * >>> parameterstep() - >>> watervolume2waterlevel( ... ANN(nmb_inputs=1, nmb_neurons=(1,), nmb_outputs=1, ... weights_input=0.5, weights_output=1.0, ... intercepts_hidden=0.0, intercepts_output=-0.5)) - >>> from hydpy import UnitTest >>> test = UnitTest( ... model, model.calc_surfacearea_v1, ... last_example=10, ... parseqs=(states.watervolume, aides.surfacearea)) >>> test.nexts.watervolume = range(10) >>> test() | ex. | watervolume | surfacearea | ----------------------------------- | 1 | 0.0 | 8.0 | | 2 | 1.0 | 8.510504 | | 3 | 2.0 | 10.172323 | | 4 | 3.0 | 13.409638 | | 5 | 4.0 | 19.048783 | | 6 | 5.0 | 28.529158 | | 7 | 6.0 | 44.270648 | | 8 | 7.0 | 70.291299 | | 9 | 8.0 | 113.232931 | | 10 | 9.0 | 184.056481 | - We apply the class - NumericalDifferentiatorto validate the calculated surface area corresponding to a water volume of 9 million m³:- >>> from hydpy import NumericalDifferentiator, round_ >>> numdiff = NumericalDifferentiator( ... xsequence=states.watervolume, ... ysequences=[factors.waterlevel], ... methods=[model.calc_waterlevel_v1]) >>> numdiff() d_waterlevel/d_watervolume: 0.005433 - Calculating the inverse of the above result (\(dV/dh\) instead of \(dh/dV\)) gives the surface area tabulated above: - >>> round_(1.0/0.005433115, decimals=5) 184.05648 
- class hydpy.models.dam.dam_model.Calc_AllowedRemoteRelief_V2[source]¶
- Bases: - Method- Calculate the allowed maximum relief that another location is allowed to discharge into the dam. - Requires the control parameters:
- Requires the derived parameters:
- Requires the factor sequence:
- Calculates the flux sequence:
- Used auxiliary method:
- smooth_logistic1()
- Basic equation:
- \(ActualRemoteRelief = HighestRemoteRelief \cdot smooth_{logistic1}(WaterLevelReliefThreshold-WaterLevel, WaterLevelReliefSmoothPar)\) 
 - Examples: - All control parameters involved in the calculation of - AllowedRemoteReliefare subclasses of- SeasonalParameter. This design allows simulating seasonal dam control schemes. To show how this works, we first define a short simulation period of two days:- >>> from hydpy import pub >>> pub.timegrids = "2001.03.30", "2001.04.03", "1d" - We prepare the dam model and define two different control schemes for the hydrological summer (April to October) and winter month (November to May): - >>> from hydpy.models.dam import * >>> parameterstep() >>> highestremoterelief(_11_1_12=1.0, _03_31_12=1.0, ... _04_1_12=2.0, _10_31_12=2.0) >>> waterlevelreliefthreshold(_11_1_12=3.0, _03_31_12=2.0, ... _04_1_12=4.0, _10_31_12=4.0) >>> waterlevelrelieftolerance(_11_1_12=0.0, _03_31_12=0.0, ... _04_1_12=1.0, _10_31_12=1.0) >>> derived.waterlevelreliefsmoothpar.update() >>> derived.toy.update() - The following test function calculates - AllowedRemoteReliefwater levels ranging from 0.0 and 8.0 meters:- >>> from hydpy import UnitTest >>> test = UnitTest(model, ... model.calc_allowedremoterelief_v2, ... last_example=9, ... parseqs=(factors.waterlevel, ... fluxes.allowedremoterelief)) >>> test.nexts.waterlevel = range(9) - On March 30 (which is the last day of the winter month and the first day of the simulation period), the value of - WaterLevelReliefSmoothParis zero. Hence,- AllowedRemoteReliefdrops abruptly from 1 m³/s (defined by- HighestRemoteRelief) to 0 m³/s as soon as- WaterLevelreaches 3 m (defined by of- WaterLevelReliefThreshold):- >>> model.idx_sim = pub.timegrids.init["2001.03.30"] >>> test(first_example=2, last_example=6) | ex. | waterlevel | allowedremoterelief | ------------------------------------------ | 3 | 1.0 | 1.0 | | 4 | 2.0 | 1.0 | | 5 | 3.0 | 0.0 | | 6 | 4.0 | 0.0 | - April 1 (the first day of the summer and the last day of the simulation period) comes with increased parameter values. The value of parameter - WaterLevelReliefSmoothParis 1 m. Hence, loosely speaking,- AllowedRemoteReliefapproaches the “discontinuous extremes (2 m³/s – defined by- HighestRemoteRelief– and 0 m³/s) to 99 % within a span of 2 m³/s around the original threshold value of 4 m³/s defined by- WaterLevelReliefThreshold:- >>> model.idx_sim = pub.timegrids.init["2001.04.01"] >>> test() | ex. | waterlevel | allowedremoterelief | ------------------------------------------ | 1 | 0.0 | 2.0 | | 2 | 1.0 | 1.999998 | | 3 | 2.0 | 1.999796 | | 4 | 3.0 | 1.98 | | 5 | 4.0 | 1.0 | | 6 | 5.0 | 0.02 | | 7 | 6.0 | 0.000204 | | 8 | 7.0 | 0.000002 | | 9 | 8.0 | 0.0 | 
- class hydpy.models.dam.dam_model.Calc_RequiredRemoteSupply_V1[source]¶
- Bases: - Method- Calculate the supply required from another location. - Requires the control parameters:
- Requires the derived parameters:
- Requires the factor sequence:
- Calculates the flux sequence:
- Used auxiliary method:
- smooth_logistic1()
- Basic equation:
- \(RequiredRemoteSupply = HighestRemoteSupply \cdot smooth_{logistic1}(WaterLevelSupplyThreshold-WaterLevel, WaterLevelSupplySmoothPar)\) 
 - Examples: - Method - Calc_RequiredRemoteSupply_V1is functionally identical with method- Calc_AllowedRemoteRelief_V2. Hence, the following examples serve for testing purposes only (see the documentation on function- Calc_AllowedRemoteRelief_V2for more detailed information):- >>> from hydpy import pub >>> pub.timegrids = "2001.03.30", "2001.04.03", "1d" >>> from hydpy.models.dam import * >>> parameterstep() >>> highestremotesupply(_11_1_12=1.0, _03_31_12=1.0, ... _04_1_12=2.0, _10_31_12=2.0) >>> waterlevelsupplythreshold(_11_1_12=3.0, _03_31_12=2.0, ... _04_1_12=4.0, _10_31_12=4.0) >>> waterlevelsupplytolerance(_11_1_12=0.0, _03_31_12=0.0, ... _04_1_12=1.0, _10_31_12=1.0) >>> derived.waterlevelsupplysmoothpar.update() >>> derived.toy.update() >>> from hydpy import UnitTest >>> test = UnitTest(model, ... model.calc_requiredremotesupply_v1, ... last_example=9, ... parseqs=(factors.waterlevel, ... fluxes.requiredremotesupply)) >>> test.nexts.waterlevel = range(9) >>> model.idx_sim = pub.timegrids.init["2001.03.30"] >>> test(first_example=2, last_example=6) | ex. | waterlevel | requiredremotesupply | ------------------------------------------- | 3 | 1.0 | 1.0 | | 4 | 2.0 | 1.0 | | 5 | 3.0 | 0.0 | | 6 | 4.0 | 0.0 | >>> model.idx_sim = pub.timegrids.init["2001.04.01"] >>> test() | ex. | waterlevel | requiredremotesupply | ------------------------------------------- | 1 | 0.0 | 2.0 | | 2 | 1.0 | 1.999998 | | 3 | 2.0 | 1.999796 | | 4 | 3.0 | 1.98 | | 5 | 4.0 | 1.0 | | 6 | 5.0 | 0.02 | | 7 | 6.0 | 0.000204 | | 8 | 7.0 | 0.000002 | | 9 | 8.0 | 0.0 | 
- class hydpy.models.dam.dam_model.Calc_NaturalRemoteDischarge_V1[source]¶
- Bases: - Method- Estimate the natural discharge of a cross-section far downstream based on the last few simulation steps. - Requires the control parameter:
- Requires the log sequences:
- Calculates the flux sequence:
- Basic equation:
- \(RemoteDemand = max(\frac{\Sigma(LoggedTotalRemoteDischarge - LoggedOutflow)}{NmbLogEntries}), 0)\) 
 - Examples: - Usually, the mean total remote flow should be larger than the mean dam outflow. Then, the estimated natural remote discharge is simply the difference between both averages: - >>> from hydpy.models.dam import * >>> parameterstep() >>> nmblogentries(3) >>> logs.loggedtotalremotedischarge(2.5, 2.0, 1.5) >>> logs.loggedoutflow(2.0, 1.0, 0.0) >>> model.calc_naturalremotedischarge_v1() >>> fluxes.naturalremotedischarge naturalremotedischarge(1.0) - Due to the wave travel times, the difference between remote discharge and dam outflow might sometimes be negative. To avoid negative estimates of natural discharge, - Calc_NaturalRemoteDischarge_V1sets its value to zero in such cases:- >>> logs.loggedoutflow(4.0, 3.0, 5.0) >>> model.calc_naturalremotedischarge_v1() >>> fluxes.naturalremotedischarge naturalremotedischarge(0.0) 
- class hydpy.models.dam.dam_model.Calc_RemoteDemand_V1[source]¶
- Bases: - Method- Estimate the discharge demand of a cross-section far downstream. - Requires the control parameter:
- Requires the derived parameter:
- Requires the flux sequence:
- Calculates the flux sequence:
- Basic equation:
- \(RemoteDemand = max(RemoteDischargeMinimum - NaturalRemoteDischarge, 0)\) 
 - Examples: - Low water elevation is often restricted to specific months of the year. Sometimes the pursued lowest discharge value varies over the year to allow for a low flow variability in some agreement with the natural flow regime. The HydPy-Dam model supports such variations. Hence we define a short simulation period first, allowing us to show how we can define the corresponding parameter values and how calculating the remote water demand throughout the year works: - >>> from hydpy import pub >>> pub.timegrids = "2001.03.30", "2001.04.03", "1d" - Prepare the dam model: - >>> from hydpy.models.dam import * >>> parameterstep() - Assume the required discharge at a gauge downstream being 2 m³/s in the hydrological summer half-year (April to October). In the winter month (November to May), there is no such requirement: - >>> remotedischargeminimum(_11_1_12=0.0, _03_31_12=0.0, ... _04_1_12=2.0, _10_31_12=2.0) >>> derived.toy.update() - Prepare a test function, that calculates the remote discharge demand based on the parameter values defined above and for natural remote discharge values ranging between 0 and 3 m³/s: - >>> from hydpy import UnitTest >>> test = UnitTest(model, model.calc_remotedemand_v1, last_example=4, ... parseqs=(fluxes.naturalremotedischarge, ... fluxes.remotedemand)) >>> test.nexts.naturalremotedischarge = range(4) - On April 1, the required discharge is 2 m³/s: - >>> model.idx_sim = pub.timegrids.init["2001.04.01"] >>> test() | ex. | naturalremotedischarge | remotedemand | ----------------------------------------------- | 1 | 0.0 | 2.0 | | 2 | 1.0 | 1.0 | | 3 | 2.0 | 0.0 | | 4 | 3.0 | 0.0 | - On May 31, the required discharge is 0 m³/s: - >>> model.idx_sim = pub.timegrids.init["2001.03.31"] >>> test() | ex. | naturalremotedischarge | remotedemand | ----------------------------------------------- | 1 | 0.0 | 0.0 | | 2 | 1.0 | 0.0 | | 3 | 2.0 | 0.0 | | 4 | 3.0 | 0.0 | 
- class hydpy.models.dam.dam_model.Calc_RemoteFailure_V1[source]¶
- Bases: - Method- Estimate the shortfall of actual discharge under the required discharge of a cross section far downstream. - Requires the control parameters:
- Requires the derived parameter:
- Requires the log sequence:
- Calculates the flux sequence:
- Basic equation:
- \(RemoteFailure = \frac{\Sigma(LoggedTotalRemoteDischarge)}{NmbLogEntries} - RemoteDischargeMinimum\) 
 - Examples: - As explained in the documentation on method - Calc_RemoteDemand_V1, we have to define a simulation period first:- >>> from hydpy import pub >>> pub.timegrids = "2001.03.30", "2001.04.03", "1d" - Now we prepare a dam model with log sequences memorizing three values: - >>> from hydpy.models.dam import * >>> parameterstep() >>> nmblogentries(3) - Again, the required discharge is 2 m³/s in summer and 0 m³/s in winter: - >>> remotedischargeminimum(_11_1_12=0.0, _03_31_12=0.0, ... _04_1_12=2.0, _10_31_12=2.0) >>> derived.toy.update() - Let it be supposed that the actual discharge at the remote cross section droped from 2 m³/s to 0 m³/s over the last three days: - >>> logs.loggedtotalremotedischarge(0.0, 1.0, 2.0) - This means that for the April 1 there would have been an averaged shortfall of 1 m³/s: - >>> model.idx_sim = pub.timegrids.init["2001.04.01"] >>> model.calc_remotefailure_v1() >>> fluxes.remotefailure remotefailure(1.0) - Instead for May 31 there would have been an excess of 1 m³/s, which is interpreted to be a “negative failure”: - >>> model.idx_sim = pub.timegrids.init["2001.03.31"] >>> model.calc_remotefailure_v1() >>> fluxes.remotefailure remotefailure(-1.0) 
- class hydpy.models.dam.dam_model.Calc_RequiredRemoteRelease_V1[source]¶
- Bases: - Method- Guess the required release necessary to not fall below the threshold value at a cross section far downstream with a certain level of certainty. - Requires the control parameter:
- Requires the derived parameters:
- Requires the flux sequences:
- Calculates the flux sequence:
- Used auxiliary method:
- smooth_logistic1()
- Basic equation:
- \(RequiredRemoteRelease = RemoteDemand + RemoteDischargeSafety \cdot smooth_{logistic1}(RemoteFailure, RemoteDischargeSmoothPar)\) 
 - Examples: - As in the examples above, define a short simulation time period first: - >>> from hydpy import pub >>> pub.timegrids = "2001.03.30", "2001.04.03", "1d" - Prepare the dam model: - >>> from hydpy.models.dam import * >>> parameterstep() >>> derived.toy.update() - Define a safety factor of 0.5 m³/s for the summer months and no safety factor at all for the winter months: - >>> remotedischargesafety(_11_1_12=0.0, _03_31_12=0.0, ... _04_1_12=1.0, _10_31_12=1.0) >>> derived.remotedischargesmoothpar.update() - Assume the actual demand at the cross section downsstream has actually been estimated to be 2 m³/s: - >>> fluxes.remotedemand = 2.0 - Prepare a test function, that calculates the required discharge based on the parameter values defined above and for a “remote failure” values ranging between -4 and 4 m³/s: - >>> from hydpy import UnitTest >>> test = UnitTest(model, model.calc_requiredremoterelease_v1, ... last_example=9, ... parseqs=(fluxes.remotefailure, ... fluxes.requiredremoterelease)) >>> test.nexts.remotefailure = range(-4, 5) - On May 31, the safety factor is 0 m³/s. Hence no discharge is added to the estimated remote demand of 2 m³/s: - >>> model.idx_sim = pub.timegrids.init["2001.03.31"] >>> test() | ex. | remotefailure | requiredremoterelease | ----------------------------------------------- | 1 | -4.0 | 2.0 | | 2 | -3.0 | 2.0 | | 3 | -2.0 | 2.0 | | 4 | -1.0 | 2.0 | | 5 | 0.0 | 2.0 | | 6 | 1.0 | 2.0 | | 7 | 2.0 | 2.0 | | 8 | 3.0 | 2.0 | | 9 | 4.0 | 2.0 | - On April 1, the safety factor is 1 m³/s. If the remote failure was exactly zero in the past, meaning the control of the dam was perfect, only 0.5 m³/s are added to the estimated remote demand of 2 m³/s. If the actual recharge did actually fall below the threshold value, up to 1 m³/s is added. If the the actual discharge exceeded the threshold value by 2 or 3 m³/s, virtually nothing is added: - >>> model.idx_sim = pub.timegrids.init["2001.04.01"] >>> test() | ex. | remotefailure | requiredremoterelease | ----------------------------------------------- | 1 | -4.0 | 2.0 | | 2 | -3.0 | 2.000001 | | 3 | -2.0 | 2.000102 | | 4 | -1.0 | 2.01 | | 5 | 0.0 | 2.5 | | 6 | 1.0 | 2.99 | | 7 | 2.0 | 2.999898 | | 8 | 3.0 | 2.999999 | | 9 | 4.0 | 3.0 | 
- class hydpy.models.dam.dam_model.Calc_RequiredRemoteRelease_V2[source]¶
- Bases: - Method- Get the required remote release of the last simulation step. - Requires the log sequence:
- Calculates the flux sequence:
- Basic equation:
- \(RequiredRemoteRelease = LoggedRequiredRemoteRelease\) 
 - Example: - >>> from hydpy.models.dam import * >>> parameterstep() >>> logs.loggedrequiredremoterelease = 3.0 >>> model.calc_requiredremoterelease_v2() >>> fluxes.requiredremoterelease requiredremoterelease(3.0) 
- class hydpy.models.dam.dam_model.Calc_AllowedRemoteRelief_V1[source]¶
- Bases: - Method- Get the allowed remote relief of the last simulation step. - Requires the log sequence:
- Calculates the flux sequence:
- Basic equation:
- \(AllowedRemoteRelief = LoggedAllowedRemoteRelief\) 
 - Example: - >>> from hydpy.models.dam import * >>> parameterstep() >>> logs.loggedallowedremoterelief = 2.0 >>> model.calc_allowedremoterelief_v1() >>> fluxes.allowedremoterelief allowedremoterelief(2.0) 
- class hydpy.models.dam.dam_model.Calc_RequiredRelease_V1[source]¶
- Bases: - Method- Calculate the total water release (immediately and far downstream) required for reducing drought events. - Requires the control parameter:
- Requires the derived parameters:
- Requires the flux sequence:
- Calculates the flux sequence:
- Used auxiliary method:
- smooth_logistic2()
- Basic equation:
- \(RequiredRelease = RequiredRemoteRelease \cdot smooth_{logistic2}( RequiredRemoteRelease-NearDischargeMinimumThreshold, NearDischargeMinimumSmoothPar2)\) 
 - Examples: - As in the examples above, define a short simulation time period first: - >>> from hydpy import pub >>> pub.timegrids = "2001.03.30", "2001.04.03", "1d" - Prepare the dam model: - >>> from hydpy.models.dam import * >>> parameterstep() >>> derived.toy.update() - Define a minimum discharge value for a cross section immediately downstream of 4 m³/s for the summer months and of 0 m³/s for the winter months: - >>> neardischargeminimumthreshold(_11_1_12=0.0, _03_31_12=0.0, ... _04_1_12=4.0, _10_31_12=4.0) - Also define related tolerance values that are 1 m³/s in summer and 0 m³/s in winter: - >>> neardischargeminimumtolerance(_11_1_12=0.0, _03_31_12=0.0, ... _04_1_12=1.0, _10_31_12=1.0) >>> derived.neardischargeminimumsmoothpar2.update() - Prepare a test function, that calculates the required total discharge based on the parameter values defined above and for a required value for a cross section far downstream ranging from 0 m³/s to 8 m³/s: - >>> from hydpy import UnitTest >>> test = UnitTest(model, model.calc_requiredrelease_v1, ... last_example=9, ... parseqs=(fluxes.requiredremoterelease, ... fluxes.requiredrelease)) >>> test.nexts.requiredremoterelease = range(9) - On May 31, both the threshold and the tolerance value are 0 m³/s. Hence the required total and the required remote release are equal: - >>> model.idx_sim = pub.timegrids.init["2001.03.31"] >>> test() | ex. | requiredremoterelease | requiredrelease | ------------------------------------------------- | 1 | 0.0 | 0.0 | | 2 | 1.0 | 1.0 | | 3 | 2.0 | 2.0 | | 4 | 3.0 | 3.0 | | 5 | 4.0 | 4.0 | | 6 | 5.0 | 5.0 | | 7 | 6.0 | 6.0 | | 8 | 7.0 | 7.0 | | 9 | 8.0 | 8.0 | - On April 1, the threshold value is 4 m³/s and the tolerance value is 1 m³/s. For low values of the required remote release, the required total release approximates the threshold value. For large values, it approximates the required remote release itself. Around the threshold value, due to the tolerance value of 1 m³/s, the required total release is a little larger than both the treshold value and the required remote release value: - >>> model.idx_sim = pub.timegrids.init["2001.04.01"] >>> test() | ex. | requiredremoterelease | requiredrelease | ------------------------------------------------- | 1 | 0.0 | 4.0 | | 2 | 1.0 | 4.000012 | | 3 | 2.0 | 4.000349 | | 4 | 3.0 | 4.01 | | 5 | 4.0 | 4.205524 | | 6 | 5.0 | 5.01 | | 7 | 6.0 | 6.000349 | | 8 | 7.0 | 7.000012 | | 9 | 8.0 | 8.0 | 
- class hydpy.models.dam.dam_model.Calc_RequiredRelease_V2[source]¶
- Bases: - Method- Calculate the water release (immediately downstream) required for reducing drought events. - Requires the control parameter:
- Requires the derived parameter:
- Calculates the flux sequence:
- Basic equation:
- \(RequiredRelease = NearDischargeMinimumThreshold\) 
 - Examples: - As in the examples above, define a short simulation time period first: - >>> from hydpy import pub >>> pub.timegrids = "2001.03.30", "2001.04.03", "1d" - Prepare the dam model: - >>> from hydpy.models.dam import * >>> parameterstep() >>> derived.toy.update() - Define a minimum discharge value for a cross section immediately downstream of 4 m³/s for the summer months and of 0 m³/s for the winter months: - >>> neardischargeminimumthreshold(_11_1_12=0.0, _03_31_12=0.0, ... _04_1_12=4.0, _10_31_12=4.0) - As to be expected, the calculated required release is 0.0 m³/s on May 31 and 4.0 m³/s on April 1: - >>> model.idx_sim = pub.timegrids.init["2001.03.31"] >>> model.calc_requiredrelease_v2() >>> fluxes.requiredrelease requiredrelease(0.0) >>> model.idx_sim = pub.timegrids.init["2001.04.01"] >>> model.calc_requiredrelease_v2() >>> fluxes.requiredrelease requiredrelease(4.0) 
- class hydpy.models.dam.dam_model.Calc_PossibleRemoteRelief_V1[source]¶
- Bases: - Method- Calculate the highest possible water release that can be routed to a remote location based on an interpolation approach approximating the relationship between possible release and water stage. - Requires the control parameter:
- Requires the factor sequence:
- Calculates the flux sequence:
 - Example: - For simplicity, the example of method - Calc_FloodDischarge_V1is reused. See the documentation on the mentioned method for further information:- >>> from hydpy.models.dam import * >>> parameterstep() >>> waterlevel2possibleremoterelief( ... ANN(nmb_inputs=1, ... nmb_neurons=(2,), ... nmb_outputs=1, ... weights_input=[[50.0, 4]], ... weights_output=[[2.0], [30]], ... intercepts_hidden=[[-13000, -1046]], ... intercepts_output=[0.0])) >>> from hydpy import UnitTest >>> test = UnitTest( ... model, model.calc_possibleremoterelief_v1, ... last_example=21, ... parseqs=(factors.waterlevel, fluxes.possibleremoterelief)) >>> test.nexts.waterlevel = numpy.arange(257, 261.1, 0.2) >>> test() | ex. | waterlevel | possibleremoterelief | ------------------------------------------- | 1 | 257.0 | 0.0 | | 2 | 257.2 | 0.000001 | | 3 | 257.4 | 0.000002 | | 4 | 257.6 | 0.000005 | | 5 | 257.8 | 0.000011 | | 6 | 258.0 | 0.000025 | | 7 | 258.2 | 0.000056 | | 8 | 258.4 | 0.000124 | | 9 | 258.6 | 0.000275 | | 10 | 258.8 | 0.000612 | | 11 | 259.0 | 0.001362 | | 12 | 259.2 | 0.003031 | | 13 | 259.4 | 0.006745 | | 14 | 259.6 | 0.015006 | | 15 | 259.8 | 0.033467 | | 16 | 260.0 | 1.074179 | | 17 | 260.2 | 2.164498 | | 18 | 260.4 | 2.363853 | | 19 | 260.6 | 2.79791 | | 20 | 260.8 | 3.719725 | | 21 | 261.0 | 5.576088 | 
- class hydpy.models.dam.dam_model.Fix_Min1_V1[source]¶
- Bases: - Method- Apply function - smooth_min1()without risking negative results.- Used auxiliary methods:
- smooth_min1()- smooth_max1()
 - When applying function - smooth_min1()straight-forward (\(result = smooth_min1(input, threshold, smoothpar\)), it likely results in slightly negative result values for a positive threshold value and an input value of zero. Some methods of the- dammodels rely on- smooth_min1()but should never return negative values. Therefore, methods- Fix_Min1_V1modifies- smooth_min1()for such cases.- Method both supports “absolute” (where the smoothing parameter value is taken as is) and “relative” smoothers (where the actual smoothing parameter value depends on the current threshold value). Please see the detailed documentation on methods - Calc_ActualRemoteRelief_V1(implementing a “relative” smoother approach), which explains the strategy behind method- Fix_Min1_V1in depths. The documentation on method- Update_ActualRemoteRelief_V1provides test calculation results for the “aboslute” smoother approach.
- class hydpy.models.dam.dam_model.Calc_ActualRemoteRelief_V1[source]¶
- Bases: - Method- Calculate the actual amount of water released to a remote location to relieve the dam during high flow conditions. - Requires the control parameter:
- Requires the flux sequences:
- Calculates the flux sequence:
- Basic equation - discontinous:
- \(ActualRemoteRelease = min(PossibleRemoteRelease, AllowedRemoteRelease)\) 
- Used additional method:
- Basic equation - continous:
- \(ActualRemoteRelease = smooth_min1(PossibleRemoteRelease, AllowedRemoteRelease, RemoteReliefTolerance)\) 
 - Note that the given continous basic equation is a simplification of the complete algorithm to calculate - ActualRemoteRelief, which also makes use of- smooth_max1()to prevent from gaining negative values in a smooth manner.- Examples: - Prepare a dam model: - >>> from hydpy.models.dam import * >>> parameterstep() - Prepare a test function object that performs seven examples with - PossibleRemoteReliefranging from -1 to 5 m³/s:- >>> from hydpy import UnitTest >>> test = UnitTest(model, model.calc_actualremoterelief_v1, ... last_example=7, ... parseqs=(fluxes.possibleremoterelief, ... fluxes.actualremoterelief)) >>> test.nexts.possibleremoterelief = range(-1, 6) - We begin with a - AllowedRemoteReliefvalue of 3 m³/s:- >>> fluxes.allowedremoterelief = 3.0 - Through setting the value of - RemoteReliefToleranceto the lowest possible value, there is no smoothing. Instead, the relationship between- ActualRemoteReliefand- PossibleRemoteRelieffollows the simple discontinous minimum function:- >>> remoterelieftolerance(0.0) >>> test() | ex. | possibleremoterelief | actualremoterelief | --------------------------------------------------- | 1 | -1.0 | 0.0 | | 2 | 0.0 | 0.0 | | 3 | 1.0 | 1.0 | | 4 | 2.0 | 2.0 | | 5 | 3.0 | 3.0 | | 6 | 4.0 | 3.0 | | 7 | 5.0 | 3.0 | - Increasing the value of parameter - RemoteReliefToleranceto a sensible value results in a moderate smoothing:- >>> remoterelieftolerance(0.2) >>> test() | ex. | possibleremoterelief | actualremoterelief | --------------------------------------------------- | 1 | -1.0 | 0.0 | | 2 | 0.0 | 0.0 | | 3 | 1.0 | 0.970639 | | 4 | 2.0 | 1.89588 | | 5 | 3.0 | 2.584112 | | 6 | 4.0 | 2.896195 | | 7 | 5.0 | 2.978969 | - Even when setting a very large smoothing parameter value, the actual remote relief does not fall below 0 m³/s: - >>> remoterelieftolerance(1.0) >>> test() | ex. | possibleremoterelief | actualremoterelief | --------------------------------------------------- | 1 | -1.0 | 0.0 | | 2 | 0.0 | 0.0 | | 3 | 1.0 | 0.306192 | | 4 | 2.0 | 0.634882 | | 5 | 3.0 | 1.037708 | | 6 | 4.0 | 1.436494 | | 7 | 5.0 | 1.788158 | - Now we repeat the last example with an allowed remote relief of only 0.03 m³/s instead of 3 m³/s: - >>> fluxes.allowedremoterelief = 0.03 >>> test() | ex. | possibleremoterelief | actualremoterelief | --------------------------------------------------- | 1 | -1.0 | 0.0 | | 2 | 0.0 | 0.0 | | 3 | 1.0 | 0.03 | | 4 | 2.0 | 0.03 | | 5 | 3.0 | 0.03 | | 6 | 4.0 | 0.03 | | 7 | 5.0 | 0.03 | - The result above is as expected, but the smooth part of the relationship is not resolved. By increasing the resolution we see a relationship that corresponds to the one shown above for an allowed relief of 3 m³/s. This points out, that the degree of smoothing is releative to the allowed relief: - >>> import numpy >>> test.nexts.possibleremoterelief = numpy.arange(-0.01, 0.06, 0.01) >>> test() | ex. | possibleremoterelief | actualremoterelief | --------------------------------------------------- | 1 | -0.01 | 0.0 | | 2 | 0.0 | 0.0 | | 3 | 0.01 | 0.003062 | | 4 | 0.02 | 0.006349 | | 5 | 0.03 | 0.010377 | | 6 | 0.04 | 0.014365 | | 7 | 0.05 | 0.017882 | - One can reperform the shown experiments with an even higher resolution to see that the relationship between - ActualRemoteReliefand- PossibleRemoteReliefis (at least in most cases) in fact very smooth. But a more analytical approach would possibly be favourable regarding the smoothness in some edge cases and computational efficiency.
- class hydpy.models.dam.dam_model.Calc_TargetedRelease_V1[source]¶
- Bases: - Method- Calculate the targeted water release for reducing drought events, taking into account both the required water release and the actual inflow into the dam. - Requires the control parameters:
- Requires the derived parameters:
- Requires the flux sequences:
- Calculates the flux sequence:
 - Some dams are supposed to maintain a certain degree of low flow variability downstream. In case parameter - RestrictTargetedReleaseis set to True, method- Calc_TargetedRelease_V1simulates this by (approximately) passing inflow as outflow whenever inflow is below the value of the threshold parameter- NearDischargeMinimumThreshold. If parameter- RestrictTargetedReleaseis set to False, does nothing except assigning the value of sequence- RequiredReleaseto sequence- TargetedRelease.- Used auxiliary method:
- smooth_logistic1()
- Basic equation:
- \(TargetedRelease = w \cdot RequiredRelease + (1-w) \cdot Inflow\) - \(w = smooth_{logistic1}( Inflow-NearDischargeMinimumThreshold, NearDischargeMinimumSmoothPar1)\) 
 - Examples: - As in the examples above, define a short simulation time period first: - >>> from hydpy import pub >>> pub.timegrids = "2001.03.30", "2001.04.03", "1d" - Prepare the dam model: - >>> from hydpy.models.dam import * >>> parameterstep() >>> derived.toy.update() - We start with enabling - RestrictTargetedRelease:- >>> restricttargetedrelease(True) - Define a minimum discharge value for a cross section immediately downstream of 6 m³/s for the summer months and of 4 m³/s for the winter months: - >>> neardischargeminimumthreshold(_11_1_12=6.0, _03_31_12=6.0, ... _04_1_12=4.0, _10_31_12=4.0) - Also define related tolerance values that are 1 m³/s in summer and 0 m³/s in winter: - >>> neardischargeminimumtolerance(_11_1_12=0.0, _03_31_12=0.0, ... _04_1_12=2.0, _10_31_12=2.0) >>> derived.neardischargeminimumsmoothpar1.update() - Prepare a test function that calculates the targeted water release based on the parameter values defined above and for inflows into the dam ranging from 0 m³/s to 10 m³/s: - >>> from hydpy import UnitTest >>> test = UnitTest(model, model.calc_targetedrelease_v1, ... last_example=21, ... parseqs=(fluxes.inflow, ... fluxes.targetedrelease)) >>> test.nexts.inflow = numpy.arange(0.0, 10.5, .5) - Firstly, assume the required release of water for reducing droughts has already been determined to be 10 m³/s: - >>> fluxes.requiredrelease = 10. - On May 31, the tolerance value is 0 m³/s. Hence the targeted release jumps from the inflow value to the required release when exceeding the threshold value of 6 m³/s: - >>> model.idx_sim = pub.timegrids.init["2001.03.31"] >>> test() | ex. | inflow | targetedrelease | ---------------------------------- | 1 | 0.0 | 0.0 | | 2 | 0.5 | 0.5 | | 3 | 1.0 | 1.0 | | 4 | 1.5 | 1.5 | | 5 | 2.0 | 2.0 | | 6 | 2.5 | 2.5 | | 7 | 3.0 | 3.0 | | 8 | 3.5 | 3.5 | | 9 | 4.0 | 4.0 | | 10 | 4.5 | 4.5 | | 11 | 5.0 | 5.0 | | 12 | 5.5 | 5.5 | | 13 | 6.0 | 8.0 | | 14 | 6.5 | 10.0 | | 15 | 7.0 | 10.0 | | 16 | 7.5 | 10.0 | | 17 | 8.0 | 10.0 | | 18 | 8.5 | 10.0 | | 19 | 9.0 | 10.0 | | 20 | 9.5 | 10.0 | | 21 | 10.0 | 10.0 | - On April 1, the threshold value is 4 m³/s and the tolerance value is 2 m³/s. Hence there is a smooth transition for inflows ranging between 2 m³/s and 6 m³/s: - >>> model.idx_sim = pub.timegrids.init["2001.04.01"] >>> test() | ex. | inflow | targetedrelease | ---------------------------------- | 1 | 0.0 | 0.00102 | | 2 | 0.5 | 0.503056 | | 3 | 1.0 | 1.009127 | | 4 | 1.5 | 1.527132 | | 5 | 2.0 | 2.08 | | 6 | 2.5 | 2.731586 | | 7 | 3.0 | 3.639277 | | 8 | 3.5 | 5.064628 | | 9 | 4.0 | 7.0 | | 10 | 4.5 | 8.676084 | | 11 | 5.0 | 9.543374 | | 12 | 5.5 | 9.861048 | | 13 | 6.0 | 9.96 | | 14 | 6.5 | 9.988828 | | 15 | 7.0 | 9.996958 | | 16 | 7.5 | 9.999196 | | 17 | 8.0 | 9.999796 | | 18 | 8.5 | 9.999951 | | 19 | 9.0 | 9.99999 | | 20 | 9.5 | 9.999998 | | 21 | 10.0 | 10.0 | - An required release substantially below the threshold value is a rather unlikely scenario, but is at least instructive regarding the functioning of the method (when plotting the results graphically…): - >>> fluxes.requiredrelease = 2. - On May 31, the relationship between targeted release and inflow is again highly discontinous: - >>> model.idx_sim = pub.timegrids.init["2001.03.31"] >>> test() | ex. | inflow | targetedrelease | ---------------------------------- | 1 | 0.0 | 0.0 | | 2 | 0.5 | 0.5 | | 3 | 1.0 | 1.0 | | 4 | 1.5 | 1.5 | | 5 | 2.0 | 2.0 | | 6 | 2.5 | 2.5 | | 7 | 3.0 | 3.0 | | 8 | 3.5 | 3.5 | | 9 | 4.0 | 4.0 | | 10 | 4.5 | 4.5 | | 11 | 5.0 | 5.0 | | 12 | 5.5 | 5.5 | | 13 | 6.0 | 4.0 | | 14 | 6.5 | 2.0 | | 15 | 7.0 | 2.0 | | 16 | 7.5 | 2.0 | | 17 | 8.0 | 2.0 | | 18 | 8.5 | 2.0 | | 19 | 9.0 | 2.0 | | 20 | 9.5 | 2.0 | | 21 | 10.0 | 2.0 | - And on April 1, it is again absolutely smooth: - >>> model.idx_sim = pub.timegrids.init["2001.04.01"] >>> test() | ex. | inflow | targetedrelease | ---------------------------------- | 1 | 0.0 | 0.000204 | | 2 | 0.5 | 0.500483 | | 3 | 1.0 | 1.001014 | | 4 | 1.5 | 1.501596 | | 5 | 2.0 | 2.0 | | 6 | 2.5 | 2.484561 | | 7 | 3.0 | 2.908675 | | 8 | 3.5 | 3.138932 | | 9 | 4.0 | 3.0 | | 10 | 4.5 | 2.60178 | | 11 | 5.0 | 2.273976 | | 12 | 5.5 | 2.108074 | | 13 | 6.0 | 2.04 | | 14 | 6.5 | 2.014364 | | 15 | 7.0 | 2.005071 | | 16 | 7.5 | 2.00177 | | 17 | 8.0 | 2.000612 | | 18 | 8.5 | 2.00021 | | 19 | 9.0 | 2.000072 | | 20 | 9.5 | 2.000024 | | 21 | 10.0 | 2.000008 | - For required releases equal with the threshold value, there is generally no jump in the relationship. But on May 31, there remains a discontinuity in the first derivative: - >>> fluxes.requiredrelease = 6. >>> model.idx_sim = pub.timegrids.init["2001.03.31"] >>> test() | ex. | inflow | targetedrelease | ---------------------------------- | 1 | 0.0 | 0.0 | | 2 | 0.5 | 0.5 | | 3 | 1.0 | 1.0 | | 4 | 1.5 | 1.5 | | 5 | 2.0 | 2.0 | | 6 | 2.5 | 2.5 | | 7 | 3.0 | 3.0 | | 8 | 3.5 | 3.5 | | 9 | 4.0 | 4.0 | | 10 | 4.5 | 4.5 | | 11 | 5.0 | 5.0 | | 12 | 5.5 | 5.5 | | 13 | 6.0 | 6.0 | | 14 | 6.5 | 6.0 | | 15 | 7.0 | 6.0 | | 16 | 7.5 | 6.0 | | 17 | 8.0 | 6.0 | | 18 | 8.5 | 6.0 | | 19 | 9.0 | 6.0 | | 20 | 9.5 | 6.0 | | 21 | 10.0 | 6.0 | - On April 1, this second order discontinuity is smoothed with the help of a little hump around the threshold: - >>> fluxes.requiredrelease = 4. >>> model.idx_sim = pub.timegrids.init["2001.04.01"] >>> test() | ex. | inflow | targetedrelease | ---------------------------------- | 1 | 0.0 | 0.000408 | | 2 | 0.5 | 0.501126 | | 3 | 1.0 | 1.003042 | | 4 | 1.5 | 1.50798 | | 5 | 2.0 | 2.02 | | 6 | 2.5 | 2.546317 | | 7 | 3.0 | 3.091325 | | 8 | 3.5 | 3.620356 | | 9 | 4.0 | 4.0 | | 10 | 4.5 | 4.120356 | | 11 | 5.0 | 4.091325 | | 12 | 5.5 | 4.046317 | | 13 | 6.0 | 4.02 | | 14 | 6.5 | 4.00798 | | 15 | 7.0 | 4.003042 | | 16 | 7.5 | 4.001126 | | 17 | 8.0 | 4.000408 | | 18 | 8.5 | 4.000146 | | 19 | 9.0 | 4.000051 | | 20 | 9.5 | 4.000018 | | 21 | 10.0 | 4.000006 | - Repeating the above example with the - RestrictTargetedReleaseflag disabled results in identical values for sequences- RequiredReleaseand- TargetedRelease:- >>> restricttargetedrelease(False) >>> test() | ex. | inflow | targetedrelease | ---------------------------------- | 1 | 0.0 | 4.0 | | 2 | 0.5 | 4.0 | | 3 | 1.0 | 4.0 | | 4 | 1.5 | 4.0 | | 5 | 2.0 | 4.0 | | 6 | 2.5 | 4.0 | | 7 | 3.0 | 4.0 | | 8 | 3.5 | 4.0 | | 9 | 4.0 | 4.0 | | 10 | 4.5 | 4.0 | | 11 | 5.0 | 4.0 | | 12 | 5.5 | 4.0 | | 13 | 6.0 | 4.0 | | 14 | 6.5 | 4.0 | | 15 | 7.0 | 4.0 | | 16 | 7.5 | 4.0 | | 17 | 8.0 | 4.0 | | 18 | 8.5 | 4.0 | | 19 | 9.0 | 4.0 | | 20 | 9.5 | 4.0 | | 21 | 10.0 | 4.0 | 
- class hydpy.models.dam.dam_model.Calc_ActualRelease_V1[source]¶
- Bases: - Method- Calculate the actual water release that can be supplied by the dam considering the targeted release and the given water level. - Requires the control parameter:
- Requires the derived parameter:
- Requires the factor sequence:
- Requires the flux sequence:
- Calculates the flux sequence:
- Used auxiliary method:
- smooth_logistic1()
- Basic equation:
- \(ActualRelease = TargetedRelease \cdot smooth_{logistic1}(WaterLevelMinimumThreshold - WaterLevel, WaterLevelMinimumSmoothPar)\) 
 - Examples: - Prepare the dam model: - >>> from hydpy.models.dam import * >>> parameterstep() - Assume the required release has previously been estimated to be 2 m³/s: - >>> fluxes.targetedrelease = 2.0 - Prepare a test function, that calculates the targeted water release for water levels ranging between -1 and 5 m: - >>> from hydpy import UnitTest >>> test = UnitTest(model, model.calc_actualrelease_v1, ... last_example=7, ... parseqs=(factors.waterlevel, ... fluxes.actualrelease)) >>> test.nexts.waterlevel = range(-1, 6) - Example 1 - Firstly, we define a sharp minimum water level tolerance of 0 m: - >>> waterlevelminimumthreshold(0.0) >>> waterlevelminimumtolerance(0.0) >>> derived.waterlevelminimumsmoothpar.update() - The following test results show that the water release is reduced to 0 m³/s for water levels (even slightly) lower than 0 m and is identical with the required value of 2 m³/s (even slighlty) above 0 m: - >>> test() | ex. | waterlevel | actualrelease | ------------------------------------ | 1 | -1.0 | 0.0 | | 2 | 0.0 | 1.0 | | 3 | 1.0 | 2.0 | | 4 | 2.0 | 2.0 | | 5 | 3.0 | 2.0 | | 6 | 4.0 | 2.0 | | 7 | 5.0 | 2.0 | - One may have noted that in the above example the calculated water release is 1 m³/s (which is exactly the half of the targeted release) at a water level of 1 m. This looks suspiciously lake a flaw but is not of any importance considering the fact, that numerical integration algorithms will approximate the analytical solution of a complete emptying of a dam emtying (which is a water level of 0 m), only with a certain accuracy. - Example 2 - Nonetheless, it can (besides some other possible advantages) dramatically increase the speed of numerical integration algorithms to define a smooth transition area instead of sharp threshold value, like in the following example: - >>> waterlevelminimumthreshold(4.0) >>> waterlevelminimumtolerance(1.0) >>> derived.waterlevelminimumsmoothpar.update() - Now, 98 % of the variation of the total range from 0 m³/s to 2 m³/s occurs between a water level of 3 m and 5 m: - >>> test() | ex. | waterlevel | actualrelease | ------------------------------------ | 1 | -1.0 | 0.0 | | 2 | 0.0 | 0.0 | | 3 | 1.0 | 0.000002 | | 4 | 2.0 | 0.000204 | | 5 | 3.0 | 0.02 | | 6 | 4.0 | 1.0 | | 7 | 5.0 | 1.98 | - Example 3 - Note that it is possible to set both parameters in a manner that might result in negative water stages beyond numerical inaccuracy: - >>> waterlevelminimumthreshold(1.0) >>> waterlevelminimumtolerance(2.0) >>> derived.waterlevelminimumsmoothpar.update() - Here, the actual water release is 0.18 m³/s for a water level of 0 m. Hence water stages in the range of 0 m to -1 m or even -2 m might occur during the simulation of long drought events: - >>> test() | ex. | waterlevel | actualrelease | ------------------------------------ | 1 | -1.0 | 0.02 | | 2 | 0.0 | 0.18265 | | 3 | 1.0 | 1.0 | | 4 | 2.0 | 1.81735 | | 5 | 3.0 | 1.98 | | 6 | 4.0 | 1.997972 | | 7 | 5.0 | 1.999796 | 
- class hydpy.models.dam.dam_model.Calc_ActualRelease_V2[source]¶
- Bases: - Method- Calculate the actual water release in aggrement with the allowed release not causing harm downstream and the actual water volume. - Requires the control parameters:
- Requires the derived parameters:
- Requires the factor sequence:
- Calculates the flux sequence:
- Used auxiliary method:
- smooth_logistic1()
- Basic equation:
- \(ActualRelease = AllowedRelease \cdot smooth_{logistic1}(WaterLevel, WaterLevelMinimumSmoothPar)\) 
 - Examples: - We assume a short simulation period spanning the last and first two days of March and April, respectively: - >>> from hydpy import pub >>> pub.timegrids = "2001-03-30", "2001-04-03", "1d" - We prepare the dam model and set the allowed release to 2 m³/s and to 4 m³/s for March and February, respectively, and set the water level threshold to 0.5 m: - >>> from hydpy.models.dam import * >>> parameterstep() >>> allowedrelease(_11_1_12=2.0, _03_31_12=2.0, ... _04_1_12=4.0, _10_31_12=4.0) >>> waterlevelminimumthreshold(0.5) >>> derived.toy.update() - Next, wrepare a test function, that calculates the actual water release for water levels ranging between 0.1 and 0.9 m: - >>> from hydpy import UnitTest >>> test = UnitTest(model, model.calc_actualrelease_v2, ... last_example=9, ... parseqs=(factors.waterlevel, ... fluxes.actualrelease)) >>> test.nexts.waterlevel = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 - First, we define a sharp minimum water level tolerance of 0 m, resulting in a sharp transition from 0 to 2 m³/s around the a water level threshold of 0.5 m, shown for the 31st March: - >>> model.idx_sim = pub.timegrids.init["2001-03-31"] >>> waterlevelminimumtolerance(0.0) >>> derived.waterlevelminimumsmoothpar.update() >>> test() | ex. | waterlevel | actualrelease | ------------------------------------ | 1 | 0.1 | 0.0 | | 2 | 0.2 | 0.0 | | 3 | 0.3 | 0.0 | | 4 | 0.4 | 0.0 | | 5 | 0.5 | 1.0 | | 6 | 0.6 | 2.0 | | 7 | 0.7 | 2.0 | | 8 | 0.8 | 2.0 | | 9 | 0.9 | 2.0 | - Second, we define a numerically more sensible tolerance value of 0.1 m, causing 98 % of the variation of the actual release to occur between water levels of 0.4 m and 0.6 m, shown for the 1th April: - >>> model.idx_sim = pub.timegrids.init["2001-04-01"] >>> waterlevelminimumtolerance(0.1) >>> derived.waterlevelminimumsmoothpar.update() >>> test() | ex. | waterlevel | actualrelease | ------------------------------------ | 1 | 0.1 | 0.0 | | 2 | 0.2 | 0.000004 | | 3 | 0.3 | 0.000408 | | 4 | 0.4 | 0.04 | | 5 | 0.5 | 2.0 | | 6 | 0.6 | 3.96 | | 7 | 0.7 | 3.999592 | | 8 | 0.8 | 3.999996 | | 9 | 0.9 | 4.0 | 
- class hydpy.models.dam.dam_model.Calc_ActualRelease_V3[source]¶
- Bases: - Method- Calculate an actual water release that tries to change the water storage into the direction of the actual target volume without violating the required minimum and the allowed maximum flow. - Requires the control parameters:
- TargetVolume- TargetRangeAbsolute- TargetRangeRelative- NearDischargeMinimumThreshold- WaterVolumeMinimumThreshold
- Requires the derived parameters:
- TOY- VolumeSmoothParLog1- VolumeSmoothParLog2- DischargeSmoothPar
- Requires the flux sequence:
- Requires the state sequence:
- Requires the aide sequence:
- Calculates the flux sequence:
- Used auxiliary methods:
- smooth_logistic1()- smooth_logistic2()- smooth_min1()- smooth_max1()
 - Examples: - Method - Calc_ActualRelease_V3is quite complex. As it is the key component of application model- dam_lreservoir, we advise to read its documentation including some introductory examples first, and to inspect the following detailled examples afterwards, which hopefully cover all of the mentioned corner cases.- >>> from hydpy import pub >>> pub.timegrids = "2001-03-30", "2001-04-03", "1d" - >>> from hydpy.models.dam import * >>> parameterstep() >>> targetvolume(_11_1_12=5.0, _03_31_12=5.0, ... _04_1_12=0.0, _10_31_12=0.0) >>> neardischargeminimumthreshold(_11_1_12=3.0, _03_31_12=3.0, ... _04_1_12=0.0, _10_31_12=0.0) >>> watervolumeminimumthreshold(0.0) >>> derived.toy.update() - >>> from hydpy import UnitTest >>> test = UnitTest(model, model.calc_actualrelease_v3, ... last_example=31, ... parseqs=(states.watervolume, ... fluxes.actualrelease)) >>> import numpy >>> test.nexts.watervolume = numpy.arange(3.5, 6.6, 0.1) - >>> model.idx_sim = pub.timegrids.init["2001-03-31"] >>> aides.alloweddischarge = 6.0 - >>> def set_tolerances(value): ... volumetolerance(value) ... dischargetolerance(value) ... derived.volumesmoothparlog1.update() ... derived.volumesmoothparlog2.update() ... derived.dischargesmoothpar.update() - >>> def apply_targetrange(flag): ... if flag: ... targetrangeabsolute(0.1) ... targetrangerelative(0.2) ... else: ... targetrangeabsolute(0.0) ... targetrangerelative(0.0) - Standard case, without smoothing, without interpolation: - >>> fluxes.inflow = 4.0 >>> set_tolerances(0.0) >>> apply_targetrange(False) >>> test() | ex. | watervolume | actualrelease | ------------------------------------- | 1 | 3.5 | 3.0 | | 2 | 3.6 | 3.0 | | 3 | 3.7 | 3.0 | | 4 | 3.8 | 3.0 | | 5 | 3.9 | 3.0 | | 6 | 4.0 | 3.0 | | 7 | 4.1 | 3.0 | | 8 | 4.2 | 3.0 | | 9 | 4.3 | 3.0 | | 10 | 4.4 | 3.0 | | 11 | 4.5 | 3.0 | | 12 | 4.6 | 3.0 | | 13 | 4.7 | 3.0 | | 14 | 4.8 | 3.0 | | 15 | 4.9 | 3.0 | | 16 | 5.0 | 4.0 | | 17 | 5.1 | 6.0 | | 18 | 5.2 | 6.0 | | 19 | 5.3 | 6.0 | | 20 | 5.4 | 6.0 | | 21 | 5.5 | 6.0 | | 22 | 5.6 | 6.0 | | 23 | 5.7 | 6.0 | | 24 | 5.8 | 6.0 | | 25 | 5.9 | 6.0 | | 26 | 6.0 | 6.0 | | 27 | 6.1 | 6.0 | | 28 | 6.2 | 6.0 | | 29 | 6.3 | 6.0 | | 30 | 6.4 | 6.0 | | 31 | 6.5 | 6.0 | - Standard case, without smoothing, with interpolation: - >>> fluxes.inflow = 4.0 >>> set_tolerances(0.0) >>> apply_targetrange(True) >>> test() | ex. | watervolume | actualrelease | ------------------------------------- | 1 | 3.5 | 3.0 | | 2 | 3.6 | 3.0 | | 3 | 3.7 | 3.0 | | 4 | 3.8 | 3.0 | | 5 | 3.9 | 3.0 | | 6 | 4.0 | 3.0 | | 7 | 4.1 | 3.1 | | 8 | 4.2 | 3.2 | | 9 | 4.3 | 3.3 | | 10 | 4.4 | 3.4 | | 11 | 4.5 | 3.5 | | 12 | 4.6 | 3.6 | | 13 | 4.7 | 3.7 | | 14 | 4.8 | 3.8 | | 15 | 4.9 | 3.9 | | 16 | 5.0 | 4.0 | | 17 | 5.1 | 4.2 | | 18 | 5.2 | 4.4 | | 19 | 5.3 | 4.6 | | 20 | 5.4 | 4.8 | | 21 | 5.5 | 5.0 | | 22 | 5.6 | 5.2 | | 23 | 5.7 | 5.4 | | 24 | 5.8 | 5.6 | | 25 | 5.9 | 5.8 | | 26 | 6.0 | 6.0 | | 27 | 6.1 | 6.0 | | 28 | 6.2 | 6.0 | | 29 | 6.3 | 6.0 | | 30 | 6.4 | 6.0 | | 31 | 6.5 | 6.0 | - Standard case, moderate smoothing, without interpolation: - >>> fluxes.inflow = 4.0 >>> set_tolerances(0.1) >>> apply_targetrange(False) >>> test() | ex. | watervolume | actualrelease | ------------------------------------- | 1 | 3.5 | 3.0 | | 2 | 3.6 | 3.0 | | 3 | 3.7 | 3.0 | | 4 | 3.8 | 3.0 | | 5 | 3.9 | 3.0 | | 6 | 4.0 | 3.0 | | 7 | 4.1 | 3.0 | | 8 | 4.2 | 3.0 | | 9 | 4.3 | 3.0 | | 10 | 4.4 | 3.0 | | 11 | 4.5 | 3.0 | | 12 | 4.6 | 3.0 | | 13 | 4.7 | 3.000001 | | 14 | 4.8 | 3.000102 | | 15 | 4.9 | 3.01 | | 16 | 5.0 | 4.0 | | 17 | 5.1 | 5.98 | | 18 | 5.2 | 5.999796 | | 19 | 5.3 | 5.999998 | | 20 | 5.4 | 6.0 | | 21 | 5.5 | 6.0 | | 22 | 5.6 | 6.0 | | 23 | 5.7 | 6.0 | | 24 | 5.8 | 6.0 | | 25 | 5.9 | 6.0 | | 26 | 6.0 | 6.0 | | 27 | 6.1 | 6.0 | | 28 | 6.2 | 6.0 | | 29 | 6.3 | 6.0 | | 30 | 6.4 | 6.0 | | 31 | 6.5 | 6.0 | - Standard case, moderate smoothing, with interpolation: - >>> fluxes.inflow = 4.0 >>> set_tolerances(0.1) >>> apply_targetrange(True) >>> test() | ex. | watervolume | actualrelease | ------------------------------------- | 1 | 3.5 | 3.000013 | | 2 | 3.6 | 3.000068 | | 3 | 3.7 | 3.000369 | | 4 | 3.8 | 3.001974 | | 5 | 3.9 | 3.01 | | 6 | 4.0 | 3.040983 | | 7 | 4.1 | 3.11 | | 8 | 4.2 | 3.201974 | | 9 | 4.3 | 3.300369 | | 10 | 4.4 | 3.400067 | | 11 | 4.5 | 3.5 | | 12 | 4.6 | 3.599933 | | 13 | 4.7 | 3.699632 | | 14 | 4.8 | 3.798047 | | 15 | 4.9 | 3.8913 | | 16 | 5.0 | 4.0 | | 17 | 5.1 | 4.2177 | | 18 | 5.2 | 4.403907 | | 19 | 5.3 | 4.600737 | | 20 | 5.4 | 4.800134 | | 21 | 5.5 | 5.0 | | 22 | 5.6 | 5.199866 | | 23 | 5.7 | 5.399263 | | 24 | 5.8 | 5.596051 | | 25 | 5.9 | 5.78 | | 26 | 6.0 | 5.918035 | | 27 | 6.1 | 5.98 | | 28 | 6.2 | 5.996051 | | 29 | 6.3 | 5.999262 | | 30 | 6.4 | 5.999864 | | 31 | 6.5 | 5.999975 | - Inflow smaller than minimum release, without smoothing, without interpolation: - >>> fluxes.inflow = 2.0 >>> set_tolerances(0.0) >>> apply_targetrange(False) >>> test() | ex. | watervolume | actualrelease | ------------------------------------- | 1 | 3.5 | 3.0 | | 2 | 3.6 | 3.0 | | 3 | 3.7 | 3.0 | | 4 | 3.8 | 3.0 | | 5 | 3.9 | 3.0 | | 6 | 4.0 | 3.0 | | 7 | 4.1 | 3.0 | | 8 | 4.2 | 3.0 | | 9 | 4.3 | 3.0 | | 10 | 4.4 | 3.0 | | 11 | 4.5 | 3.0 | | 12 | 4.6 | 3.0 | | 13 | 4.7 | 3.0 | | 14 | 4.8 | 3.0 | | 15 | 4.9 | 3.0 | | 16 | 5.0 | 3.0 | | 17 | 5.1 | 6.0 | | 18 | 5.2 | 6.0 | | 19 | 5.3 | 6.0 | | 20 | 5.4 | 6.0 | | 21 | 5.5 | 6.0 | | 22 | 5.6 | 6.0 | | 23 | 5.7 | 6.0 | | 24 | 5.8 | 6.0 | | 25 | 5.9 | 6.0 | | 26 | 6.0 | 6.0 | | 27 | 6.1 | 6.0 | | 28 | 6.2 | 6.0 | | 29 | 6.3 | 6.0 | | 30 | 6.4 | 6.0 | | 31 | 6.5 | 6.0 | - Inflow smaller than minimum release, without smoothing, with interpolation: - >>> fluxes.inflow = 2.0 >>> set_tolerances(0.0) >>> apply_targetrange(True) >>> fluxes.inflow = 2.0 >>> test() | ex. | watervolume | actualrelease | ------------------------------------- | 1 | 3.5 | 3.0 | | 2 | 3.6 | 3.0 | | 3 | 3.7 | 3.0 | | 4 | 3.8 | 3.0 | | 5 | 3.9 | 3.0 | | 6 | 4.0 | 3.0 | | 7 | 4.1 | 3.0 | | 8 | 4.2 | 3.0 | | 9 | 4.3 | 3.0 | | 10 | 4.4 | 3.0 | | 11 | 4.5 | 3.0 | | 12 | 4.6 | 3.0 | | 13 | 4.7 | 3.0 | | 14 | 4.8 | 3.0 | | 15 | 4.9 | 3.0 | | 16 | 5.0 | 3.0 | | 17 | 5.1 | 3.3 | | 18 | 5.2 | 3.6 | | 19 | 5.3 | 3.9 | | 20 | 5.4 | 4.2 | | 21 | 5.5 | 4.5 | | 22 | 5.6 | 4.8 | | 23 | 5.7 | 5.1 | | 24 | 5.8 | 5.4 | | 25 | 5.9 | 5.7 | | 26 | 6.0 | 6.0 | | 27 | 6.1 | 6.0 | | 28 | 6.2 | 6.0 | | 29 | 6.3 | 6.0 | | 30 | 6.4 | 6.0 | | 31 | 6.5 | 6.0 | - Inflow smaller than minimum release, moderate smoothing, without interpolation: - >>> fluxes.inflow = 2.0 >>> set_tolerances(0.1) >>> apply_targetrange(False) >>> test() | ex. | watervolume | actualrelease | ------------------------------------- | 1 | 3.5 | 3.0 | | 2 | 3.6 | 3.0 | | 3 | 3.7 | 3.0 | | 4 | 3.8 | 3.0 | | 5 | 3.9 | 3.0 | | 6 | 4.0 | 3.0 | | 7 | 4.1 | 3.0 | | 8 | 4.2 | 3.0 | | 9 | 4.3 | 3.0 | | 10 | 4.4 | 3.0 | | 11 | 4.5 | 3.0 | | 12 | 4.6 | 3.0 | | 13 | 4.7 | 3.0 | | 14 | 4.8 | 3.0 | | 15 | 4.9 | 3.0 | | 16 | 5.0 | 3.0 | | 17 | 5.1 | 5.97 | | 18 | 5.2 | 5.999694 | | 19 | 5.3 | 5.999997 | | 20 | 5.4 | 6.0 | | 21 | 5.5 | 6.0 | | 22 | 5.6 | 6.0 | | 23 | 5.7 | 6.0 | | 24 | 5.8 | 6.0 | | 25 | 5.9 | 6.0 | | 26 | 6.0 | 6.0 | | 27 | 6.1 | 6.0 | | 28 | 6.2 | 6.0 | | 29 | 6.3 | 6.0 | | 30 | 6.4 | 6.0 | | 31 | 6.5 | 6.0 | - Inflow smaller than minimum release, moderate smoothing, with interpolation: - >>> fluxes.inflow = 2.0 >>> set_tolerances(0.1) >>> apply_targetrange(True) >>> test() | ex. | watervolume | actualrelease | ------------------------------------- | 1 | 3.5 | 3.0 | | 2 | 3.6 | 3.0 | | 3 | 3.7 | 3.0 | | 4 | 3.8 | 3.0 | | 5 | 3.9 | 3.0 | | 6 | 4.0 | 3.0 | | 7 | 4.1 | 3.0 | | 8 | 4.2 | 3.0 | | 9 | 4.3 | 3.0 | | 10 | 4.4 | 3.0 | | 11 | 4.5 | 3.0 | | 12 | 4.6 | 3.0 | | 13 | 4.7 | 3.0 | | 14 | 4.8 | 3.000001 | | 15 | 4.9 | 3.0003 | | 16 | 5.0 | 3.0 | | 17 | 5.1 | 3.3267 | | 18 | 5.2 | 3.605861 | | 19 | 5.3 | 3.901105 | | 20 | 5.4 | 4.200201 | | 21 | 5.5 | 4.5 | | 22 | 5.6 | 4.799799 | | 23 | 5.7 | 5.098894 | | 24 | 5.8 | 5.394077 | | 25 | 5.9 | 5.67 | | 26 | 6.0 | 5.877052 | | 27 | 6.1 | 5.97 | | 28 | 6.2 | 5.994077 | | 29 | 6.3 | 5.998894 | | 30 | 6.4 | 5.999796 | | 31 | 6.5 | 5.999962 | - Inflow larger than maximum release, without smoothing, without interpolation: - >>> fluxes.inflow = 7.0 >>> set_tolerances(0.0) >>> apply_targetrange(False) >>> test() | ex. | watervolume | actualrelease | ------------------------------------- | 1 | 3.5 | 3.0 | | 2 | 3.6 | 3.0 | | 3 | 3.7 | 3.0 | | 4 | 3.8 | 3.0 | | 5 | 3.9 | 3.0 | | 6 | 4.0 | 3.0 | | 7 | 4.1 | 3.0 | | 8 | 4.2 | 3.0 | | 9 | 4.3 | 3.0 | | 10 | 4.4 | 3.0 | | 11 | 4.5 | 3.0 | | 12 | 4.6 | 3.0 | | 13 | 4.7 | 3.0 | | 14 | 4.8 | 3.0 | | 15 | 4.9 | 3.0 | | 16 | 5.0 | 6.0 | | 17 | 5.1 | 6.0 | | 18 | 5.2 | 6.0 | | 19 | 5.3 | 6.0 | | 20 | 5.4 | 6.0 | | 21 | 5.5 | 6.0 | | 22 | 5.6 | 6.0 | | 23 | 5.7 | 6.0 | | 24 | 5.8 | 6.0 | | 25 | 5.9 | 6.0 | | 26 | 6.0 | 6.0 | | 27 | 6.1 | 6.0 | | 28 | 6.2 | 6.0 | | 29 | 6.3 | 6.0 | | 30 | 6.4 | 6.0 | | 31 | 6.5 | 6.0 | - Inflow larger than maximum release, without smoothing, with interpolation: - >>> fluxes.inflow = 7.0 >>> set_tolerances(0.0) >>> apply_targetrange(True) >>> test() | ex. | watervolume | actualrelease | ------------------------------------- | 1 | 3.5 | 3.0 | | 2 | 3.6 | 3.0 | | 3 | 3.7 | 3.0 | | 4 | 3.8 | 3.0 | | 5 | 3.9 | 3.0 | | 6 | 4.0 | 3.0 | | 7 | 4.1 | 3.3 | | 8 | 4.2 | 3.6 | | 9 | 4.3 | 3.9 | | 10 | 4.4 | 4.2 | | 11 | 4.5 | 4.5 | | 12 | 4.6 | 4.8 | | 13 | 4.7 | 5.1 | | 14 | 4.8 | 5.4 | | 15 | 4.9 | 5.7 | | 16 | 5.0 | 6.0 | | 17 | 5.1 | 6.0 | | 18 | 5.2 | 6.0 | | 19 | 5.3 | 6.0 | | 20 | 5.4 | 6.0 | | 21 | 5.5 | 6.0 | | 22 | 5.6 | 6.0 | | 23 | 5.7 | 6.0 | | 24 | 5.8 | 6.0 | | 25 | 5.9 | 6.0 | | 26 | 6.0 | 6.0 | | 27 | 6.1 | 6.0 | | 28 | 6.2 | 6.0 | | 29 | 6.3 | 6.0 | | 30 | 6.4 | 6.0 | | 31 | 6.5 | 6.0 | - Inflow larger than maximum release, moderate smoothing, without interpolation: - >>> fluxes.inflow = 7.0 >>> apply_targetrange(False) >>> set_tolerances(0.1) >>> test() | ex. | watervolume | actualrelease | ------------------------------------- | 1 | 3.5 | 3.0 | | 2 | 3.6 | 3.0 | | 3 | 3.7 | 3.0 | | 4 | 3.8 | 3.0 | | 5 | 3.9 | 3.0 | | 6 | 4.0 | 3.0 | | 7 | 4.1 | 3.0 | | 8 | 4.2 | 3.0 | | 9 | 4.3 | 3.0 | | 10 | 4.4 | 3.0 | | 11 | 4.5 | 3.0 | | 12 | 4.6 | 3.0 | | 13 | 4.7 | 3.000003 | | 14 | 4.8 | 3.000306 | | 15 | 4.9 | 3.03 | | 16 | 5.0 | 6.0 | | 17 | 5.1 | 6.0 | | 18 | 5.2 | 6.0 | | 19 | 5.3 | 6.0 | | 20 | 5.4 | 6.0 | | 21 | 5.5 | 6.0 | | 22 | 5.6 | 6.0 | | 23 | 5.7 | 6.0 | | 24 | 5.8 | 6.0 | | 25 | 5.9 | 6.0 | | 26 | 6.0 | 6.0 | | 27 | 6.1 | 6.0 | | 28 | 6.2 | 6.0 | | 29 | 6.3 | 6.0 | | 30 | 6.4 | 6.0 | | 31 | 6.5 | 6.0 | - Inflow larger than maximum release, moderate smoothing, with interpolation: - >>> fluxes.inflow = 7.0 >>> apply_targetrange(True) >>> set_tolerances(0.1) >>> test() | ex. | watervolume | actualrelease | ------------------------------------- | 1 | 3.5 | 3.000038 | | 2 | 3.6 | 3.000204 | | 3 | 3.7 | 3.001106 | | 4 | 3.8 | 3.005923 | | 5 | 3.9 | 3.03 | | 6 | 4.0 | 3.122948 | | 7 | 4.1 | 3.33 | | 8 | 4.2 | 3.605923 | | 9 | 4.3 | 3.901106 | | 10 | 4.4 | 4.200201 | | 11 | 4.5 | 4.5 | | 12 | 4.6 | 4.799799 | | 13 | 4.7 | 5.098895 | | 14 | 4.8 | 5.394139 | | 15 | 4.9 | 5.6733 | | 16 | 5.0 | 6.0 | | 17 | 5.1 | 5.9997 | | 18 | 5.2 | 5.999999 | | 19 | 5.3 | 6.0 | | 20 | 5.4 | 6.0 | | 21 | 5.5 | 6.0 | | 22 | 5.6 | 6.0 | | 23 | 5.7 | 6.0 | | 24 | 5.8 | 6.0 | | 25 | 5.9 | 6.0 | | 26 | 6.0 | 6.0 | | 27 | 6.1 | 6.0 | | 28 | 6.2 | 6.0 | | 29 | 6.3 | 6.0 | | 30 | 6.4 | 6.0 | | 31 | 6.5 | 6.0 | - Maximum release smaller than minimum release, without smoothing, with interpolation: - >>> aides.alloweddischarge = 1.0 >>> set_tolerances(0.0) >>> apply_targetrange(True) >>> test() | ex. | watervolume | actualrelease | ------------------------------------- | 1 | 3.5 | 3.0 | | 2 | 3.6 | 3.0 | | 3 | 3.7 | 3.0 | | 4 | 3.8 | 3.0 | | 5 | 3.9 | 3.0 | | 6 | 4.0 | 3.0 | | 7 | 4.1 | 3.0 | | 8 | 4.2 | 3.0 | | 9 | 4.3 | 3.0 | | 10 | 4.4 | 3.0 | | 11 | 4.5 | 3.0 | | 12 | 4.6 | 3.0 | | 13 | 4.7 | 3.0 | | 14 | 4.8 | 3.0 | | 15 | 4.9 | 3.0 | | 16 | 5.0 | 3.0 | | 17 | 5.1 | 3.0 | | 18 | 5.2 | 3.0 | | 19 | 5.3 | 3.0 | | 20 | 5.4 | 3.0 | | 21 | 5.5 | 3.0 | | 22 | 5.6 | 3.0 | | 23 | 5.7 | 3.0 | | 24 | 5.8 | 3.0 | | 25 | 5.9 | 3.0 | | 26 | 6.0 | 3.0 | | 27 | 6.1 | 3.0 | | 28 | 6.2 | 3.0 | | 29 | 6.3 | 3.0 | | 30 | 6.4 | 3.0 | | 31 | 6.5 | 3.0 | - Maximum release smaller than minimum release, moderate smoothing, with interpolation: - >>> aides.alloweddischarge = 1.0 >>> set_tolerances(0.1) >>> apply_targetrange(True) >>> test() | ex. | watervolume | actualrelease | ------------------------------------- | 1 | 3.5 | 3.000001 | | 2 | 3.6 | 3.000003 | | 3 | 3.7 | 3.000015 | | 4 | 3.8 | 3.000081 | | 5 | 3.9 | 3.00041 | | 6 | 4.0 | 3.00168 | | 7 | 4.1 | 3.004508 | | 8 | 4.2 | 3.008277 | | 9 | 4.3 | 3.01231 | | 10 | 4.4 | 3.016396 | | 11 | 4.5 | 3.020491 | | 12 | 4.6 | 3.024587 | | 13 | 4.7 | 3.028673 | | 14 | 4.8 | 3.032702 | | 15 | 4.9 | 3.03611 | | 16 | 5.0 | 3.040983 | | 17 | 5.1 | 3.000406 | | 18 | 5.2 | 3.000004 | | 19 | 5.3 | 3.0 | | 20 | 5.4 | 3.0 | | 21 | 5.5 | 3.0 | | 22 | 5.6 | 3.0 | | 23 | 5.7 | 3.0 | | 24 | 5.8 | 3.0 | | 25 | 5.9 | 3.0 | | 26 | 6.0 | 3.0 | | 27 | 6.1 | 3.0 | | 28 | 6.2 | 3.0 | | 29 | 6.3 | 3.0 | | 30 | 6.4 | 3.0 | | 31 | 6.5 | 3.0 | - >>> from hydpy import UnitTest >>> test = UnitTest(model, model.calc_actualrelease_v3, ... last_example=21, ... parseqs=(states.watervolume, ... fluxes.actualrelease)) >>> test.nexts.watervolume = numpy.arange(-0.5, 1.6, 0.1) >>> model.idx_sim = pub.timegrids.init["2001-04-01"] >>> fluxes.inflow = 0.0 - Zero values, without smoothing, with interpolation: - >>> set_tolerances(0.0) >>> apply_targetrange(True) >>> test() | ex. | watervolume | actualrelease | ------------------------------------- | 1 | -0.5 | 0.0 | | 2 | -0.4 | 0.0 | | 3 | -0.3 | 0.0 | | 4 | -0.2 | 0.0 | | 5 | -0.1 | 0.0 | | 6 | 0.0 | 0.0 | | 7 | 0.1 | 1.0 | | 8 | 0.2 | 1.0 | | 9 | 0.3 | 1.0 | | 10 | 0.4 | 1.0 | | 11 | 0.5 | 1.0 | | 12 | 0.6 | 1.0 | | 13 | 0.7 | 1.0 | | 14 | 0.8 | 1.0 | | 15 | 0.9 | 1.0 | | 16 | 1.0 | 1.0 | | 17 | 1.1 | 1.0 | | 18 | 1.2 | 1.0 | | 19 | 1.3 | 1.0 | | 20 | 1.4 | 1.0 | | 21 | 1.5 | 1.0 | - Zero values, moderate smoothing, with interpolation: - >>> set_tolerances(0.1) >>> apply_targetrange(True) >>> test() | ex. | watervolume | actualrelease | ------------------------------------- | 1 | -0.5 | 0.0 | | 2 | -0.4 | 0.0 | | 3 | -0.3 | 0.0 | | 4 | -0.2 | 0.000004 | | 5 | -0.1 | 0.00042 | | 6 | 0.0 | 0.032478 | | 7 | 0.1 | 0.941985 | | 8 | 0.2 | 0.9998 | | 9 | 0.3 | 0.999998 | | 10 | 0.4 | 1.0 | | 11 | 0.5 | 1.0 | | 12 | 0.6 | 1.0 | | 13 | 0.7 | 1.0 | | 14 | 0.8 | 1.0 | | 15 | 0.9 | 1.0 | | 16 | 1.0 | 1.0 | | 17 | 1.1 | 1.0 | | 18 | 1.2 | 1.0 | | 19 | 1.3 | 1.0 | | 20 | 1.4 | 1.0 | | 21 | 1.5 | 1.0 | 
- class hydpy.models.dam.dam_model.Calc_MissingRemoteRelease_V1[source]¶
- Bases: - Method- Calculate the portion of the required remote demand that could not be met by the actual discharge release. - Requires the flux sequences:
- Calculates the flux sequence:
- Basic equation:
- \(MissingRemoteRelease = max( RequiredRemoteRelease-ActualRelease, 0)\) 
 - Example: - >>> from hydpy.models.dam import * >>> parameterstep() >>> fluxes.requiredremoterelease = 2.0 >>> fluxes.actualrelease = 1.0 >>> model.calc_missingremoterelease_v1() >>> fluxes.missingremoterelease missingremoterelease(1.0) >>> fluxes.actualrelease = 3.0 >>> model.calc_missingremoterelease_v1() >>> fluxes.missingremoterelease missingremoterelease(0.0) 
- class hydpy.models.dam.dam_model.Calc_ActualRemoteRelease_V1[source]¶
- Bases: - Method- Calculate the actual remote water release that can be supplied by the dam considering the required remote release and the given water level. - Requires the control parameter:
- Requires the derived parameter:
- Requires the factor sequence:
- Requires the flux sequence:
- Calculates the flux sequence:
- Used auxiliary method:
- smooth_logistic1()
- Basic equation:
- \(ActualRemoteRelease = RequiredRemoteRelease \cdot smooth_{logistic1}(WaterLevelMinimumRemoteThreshold-WaterLevel, WaterLevelMinimumRemoteSmoothPar)\) 
 - Examples: - Note that method - Calc_ActualRemoteRelease_V1is functionally identical to method- Calc_ActualRelease_V1. This is why we omit to explain the following examples, as they are just repetitions of the ones of method- Calc_ActualRemoteRelease_V1with partly different variable names. Please follow the links to read the corresponding explanations.- >>> from hydpy.models.dam import * >>> parameterstep() >>> fluxes.requiredremoterelease = 2.0 >>> from hydpy import UnitTest >>> test = UnitTest(model, model.calc_actualremoterelease_v1, ... last_example=7, ... parseqs=(factors.waterlevel, ... fluxes.actualremoterelease)) >>> test.nexts.waterlevel = range(-1, 6) - >>> waterlevelminimumremotethreshold(0.) >>> waterlevelminimumremotetolerance(0.) >>> derived.waterlevelminimumremotesmoothpar.update() >>> test() | ex. | waterlevel | actualremoterelease | ------------------------------------------ | 1 | -1.0 | 0.0 | | 2 | 0.0 | 1.0 | | 3 | 1.0 | 2.0 | | 4 | 2.0 | 2.0 | | 5 | 3.0 | 2.0 | | 6 | 4.0 | 2.0 | | 7 | 5.0 | 2.0 | - >>> waterlevelminimumremotethreshold(4.) >>> waterlevelminimumremotetolerance(1.) >>> derived.waterlevelminimumremotesmoothpar.update() >>> test() | ex. | waterlevel | actualremoterelease | ------------------------------------------ | 1 | -1.0 | 0.0 | | 2 | 0.0 | 0.0 | | 3 | 1.0 | 0.000002 | | 4 | 2.0 | 0.000204 | | 5 | 3.0 | 0.02 | | 6 | 4.0 | 1.0 | | 7 | 5.0 | 1.98 | - >>> waterlevelminimumremotethreshold(1.) >>> waterlevelminimumremotetolerance(2.) >>> derived.waterlevelminimumremotesmoothpar.update() >>> test() | ex. | waterlevel | actualremoterelease | ------------------------------------------ | 1 | -1.0 | 0.02 | | 2 | 0.0 | 0.18265 | | 3 | 1.0 | 1.0 | | 4 | 2.0 | 1.81735 | | 5 | 3.0 | 1.98 | | 6 | 4.0 | 1.997972 | | 7 | 5.0 | 1.999796 | 
- class hydpy.models.dam.dam_model.Update_ActualRemoteRelief_V1[source]¶
- Bases: - Method- Constrain the actual relief discharge to a remote location. - Requires the control parameter:
- Requires the derived parameter:
- Updates the flux sequence:
- Used additional method:
- Basic equation - discontinous:
- \(ActualRemoteRelief = min(ActualRemoteRelease, HighestRemoteDischarge)\) 
- Basic equation - continous:
- \(ActualRemoteRelief = smooth_min1(ActualRemoteRelief, HighestRemoteDischarge, HighestRemoteSmoothPar)\) 
 - Examples: - Prepare a dam model: - >>> from hydpy.models.dam import * >>> parameterstep() - Prepare a test function object that performs eight examples with - ActualRemoteReliefranging from 0 to 8 m³/s and a fixed initial value of parameter- HighestRemoteDischargeof 4 m³/s:- >>> highestremotedischarge(4.0) >>> from hydpy import UnitTest >>> test = UnitTest(model, ... model.update_actualremoterelief_v1, ... last_example=8, ... parseqs=(fluxes.actualremoterelief,)) >>> test.nexts.actualremoterelief = range(8) - Through setting the value of - HighestRemoteToleranceto the lowest possible value, there is no smoothing. Instead, the shown relationship agrees with a combination of the discontinuous minimum and maximum function:- >>> highestremotetolerance(0.0) >>> derived.highestremotesmoothpar.update() >>> test() | ex. | actualremoterelief | ---------------------------- | 1 | 0.0 | | 2 | 1.0 | | 3 | 2.0 | | 4 | 3.0 | | 5 | 4.0 | | 6 | 4.0 | | 7 | 4.0 | | 8 | 4.0 | - Setting a sensible - HighestRemoteTolerancevalue results in a moderate smoothing:- >>> highestremotetolerance(0.1) >>> derived.highestremotesmoothpar.update() >>> test() | ex. | actualremoterelief | ---------------------------- | 1 | 0.0 | | 2 | 0.999999 | | 3 | 1.99995 | | 4 | 2.996577 | | 5 | 3.836069 | | 6 | 3.991578 | | 7 | 3.993418 | | 8 | 3.993442 | 
- class hydpy.models.dam.dam_model.Update_ActualRemoteRelease_V1[source]¶
- Bases: - Method- Constrain the actual release (supply discharge) to a remote location. - Requires the control parameter:
- Requires the derived parameter:
- Requires the flux sequence:
- Updates the flux sequence:
- Used additional method:
- Basic equation - discontinous:
- \(ActualRemoteRelease = min(ActualRemoteRelease, HighestRemoteDischarge - ActualRemoteRelief)\) 
- Basic equation - continous:
- \(ActualRemoteRelease = smooth_min1(ActualRemoteRelease, HighestRemoteDischarge - ActualRemoteRelief, HighestRemoteSmoothPar)\) 
 - Examples: - Prepare a dam model: - >>> from hydpy.models.dam import * >>> parameterstep() - Prepare a test function object that performs eight examples with - ActualRemoteReliefranging from 0 to 8 m³/s and a fixed initial value of parameter- ActualRemoteReleaseof 2 m³/s:- >>> from hydpy import UnitTest >>> test = UnitTest(model, ... model.update_actualremoterelease_v1, ... last_example=8, ... parseqs=(fluxes.actualremoterelief, ... fluxes.actualremoterelease)) >>> test.nexts.actualremoterelief = range(8) >>> test.inits.actualremoterelease = 2.0 - Through setting the value of - HighestRemoteToleranceto the lowest possible value, there is no smoothing. Instead, the shown relationship agrees with a combination of the discontinuous minimum and maximum function:- >>> highestremotedischarge(6.0) >>> highestremotetolerance(0.0) >>> derived.highestremotesmoothpar.update() >>> test() | ex. | actualremoterelief | actualremoterelease | -------------------------------------------------- | 1 | 0.0 | 2.0 | | 2 | 1.0 | 2.0 | | 3 | 2.0 | 2.0 | | 4 | 3.0 | 2.0 | | 5 | 4.0 | 2.0 | | 6 | 5.0 | 1.0 | | 7 | 6.0 | 0.0 | | 8 | 7.0 | 0.0 | - Setting a sensible - HighestRemoteTolerancevalue results in a moderate smoothing. But note that this is only true for the minimum function (restricting the larger- ActualRemoteReleasevalues). Instead of smoothing the maximum function as well,- ActualRemoteReleaseis exactly 0 m³/s for a- ActualRemoteReliefvalue of 6 m³/s (within the shown precision). The remaining discontinuity does not pose a problem, as long- ActualRemoteReliefdoes not exceed the value of- HighestRemoteDischarge. (Application models using method- Update_ActualRemoteRelease_V1should generally enforce this restriction). In case of exceedance, extended computation times might occur:- >>> highestremotetolerance(0.1) >>> derived.highestremotesmoothpar.update() >>> test() | ex. | actualremoterelief | actualremoterelease | -------------------------------------------------- | 1 | 0.0 | 1.999996 | | 2 | 1.0 | 1.999925 | | 3 | 2.0 | 1.998739 | | 4 | 3.0 | 1.979438 | | 5 | 4.0 | 1.754104 | | 6 | 5.0 | 0.976445 | | 7 | 6.0 | 0.0 | | 8 | 7.0 | 0.0 | 
- class hydpy.models.dam.dam_model.Calc_FloodDischarge_V1[source]¶
- Bases: - Method- Calculate the discharge during and after a flood event based on seasonally varying interpolation approaches approximating the relationship(s) between discharge and water stage. - Requires the control parameter:
- Requires the derived parameter:
- Requires the factor sequence:
- Calculates the flux sequence:
 - Example: - The control parameter - WaterLevel2FloodDischargeis derived from- SeasonalInterpolator. This allows to simulate different seasonal dam control schemes. To show that the seasonal selection mechanism is implemented properly, we define a short simulation period of three days:- >>> from hydpy import pub >>> pub.timegrids = "2001.01.01", "2001.01.04", "1d" - Now we prepare a dam model and define two different relationships between water level and flood discharge using artificial neural networks as interpolators. The first relatively simple relationship (for January 2) is based on two neurons contained in a single hidden layer and is used in the following example. The second neural network (for January 3) is not applied at all, which is why we do not need to assign any parameter values to it: - >>> from hydpy.models.dam import * >>> parameterstep() >>> waterlevel2flooddischarge( ... _01_02_12 = ANN(nmb_inputs=1, ... nmb_neurons=(2,), ... nmb_outputs=1, ... weights_input=[[50.0, 4]], ... weights_output=[[2.0], [30]], ... intercepts_hidden=[[-13000, -1046]], ... intercepts_output=[0.0]), ... _01_03_12 = ANN(nmb_inputs=1, ... nmb_neurons=(2,), ... nmb_outputs=1)) >>> derived.toy.update() >>> model.idx_sim = pub.timegrids.sim["2001.01.02"] - The following example shows two distinct effects of both neurons in the first network. One neuron describes a relatively sharp increase between 259.8 and 260.2 meters from about 0 to 2 m³/s. This could describe a release of water through a bottom outlet controlled by a valve. The add something like an exponential increase between 260 and 261 meters, which could describe the uncontrolled flow over a spillway: - >>> from hydpy import UnitTest >>> test = UnitTest(model, ... model.calc_flooddischarge_v1, ... last_example=21, ... parseqs=(factors.waterlevel, ... fluxes.flooddischarge)) >>> test.nexts.waterlevel = numpy.arange(257, 261.1, 0.2) >>> test() | ex. | waterlevel | flooddischarge | ------------------------------------- | 1 | 257.0 | 0.0 | | 2 | 257.2 | 0.000001 | | 3 | 257.4 | 0.000002 | | 4 | 257.6 | 0.000005 | | 5 | 257.8 | 0.000011 | | 6 | 258.0 | 0.000025 | | 7 | 258.2 | 0.000056 | | 8 | 258.4 | 0.000124 | | 9 | 258.6 | 0.000275 | | 10 | 258.8 | 0.000612 | | 11 | 259.0 | 0.001362 | | 12 | 259.2 | 0.003031 | | 13 | 259.4 | 0.006745 | | 14 | 259.6 | 0.015006 | | 15 | 259.8 | 0.033467 | | 16 | 260.0 | 1.074179 | | 17 | 260.2 | 2.164498 | | 18 | 260.4 | 2.363853 | | 19 | 260.6 | 2.79791 | | 20 | 260.8 | 3.719725 | | 21 | 261.0 | 5.576088 | 
- class hydpy.models.dam.dam_model.Calc_MaxForcedDischarge_V1[source]¶
- Bases: - Method- Approximate the currently highest possible forced water release through structures as pumps based on seasonally varying interpolation approaches that take the water level difference as input. - Requires the control parameter:
- Requires the derived parameter:
- Requires the factor sequence:
- Calculates the flux sequence:
 - Examples: - We consider a simulation period of five days: - >>> from hydpy import pub >>> pub.timegrids = "2001-01-01", "2001-01-06", "1d" - For the second day, the maximum possible discharge of 2 m³/s does not depend on the water level difference. For the fourth day, it is -4 m³/s for negative and 4 m³/s for positive water level differences: - >>> from hydpy.models.dam import * >>> parameterstep() >>> waterleveldifference2maxforceddischarge( ... _01_02_12 = PPoly(Poly(x0=0.0, cs=[2.0])), ... _01_04_12 = PPoly(Poly(x0=-2.0, cs=[-4.0]), Poly(x0=0.0, cs=[4.0])) ... ) >>> derived.toy.update() - All results are as expected: - >>> model.idx_sim = pub.timegrids.sim["2001-01-02"] >>> factors.waterleveldifference = -1.0 >>> model.calc_maxforceddischarge_v1() >>> fluxes.maxforceddischarge maxforceddischarge(2.0) - >>> model.idx_sim = pub.timegrids.sim["2001-01-03"] >>> model.calc_maxforceddischarge_v1() >>> fluxes.maxforceddischarge maxforceddischarge(-1.0) - >>> model.idx_sim = pub.timegrids.sim["2001-01-04"] >>> factors.waterleveldifference = 1.0 >>> model.calc_maxforceddischarge_v1() >>> fluxes.maxforceddischarge maxforceddischarge(4.0) 
- class hydpy.models.dam.dam_model.Calc_MaxFreeDischarge_V1[source]¶
- Bases: - Method- Approximate the currently highest possible free water release through structures as sluices based on seasonally varying interpolation approaches that take the water level difference as input. - Requires the control parameter:
- Requires the derived parameter:
- Requires the factor sequence:
- Calculates the flux sequence:
 - Examples: - We consider a simulation period of five days: - >>> from hydpy import pub >>> pub.timegrids = "2001-01-01", "2001-01-06", "1d" - For the second day, the maximum possible discharge is 2 m³/s does not depend on the water level difference. For the fourth day, it is -4 m³/s for negative and 4 m³/s for positive water level differences: - >>> from hydpy.models.dam import * >>> parameterstep() >>> waterleveldifference2maxfreedischarge( ... _01_02_12 = PPoly(Poly(x0=0.0, cs=[2.0])), ... _01_04_12 = PPoly(Poly(x0=-2.0, cs=[-4.0]), Poly(x0=0.0, cs=[4.0])) ... ) >>> derived.toy.update() - All results are as expected: - >>> model.idx_sim = pub.timegrids.sim["2001-01-02"] >>> factors.effectivewaterleveldifference = -1.0 >>> model.calc_maxfreedischarge_v1() >>> fluxes.maxfreedischarge maxfreedischarge(2.0) - >>> model.idx_sim = pub.timegrids.sim["2001-01-03"] >>> model.calc_maxfreedischarge_v1() >>> fluxes.maxfreedischarge maxfreedischarge(-1.0) - >>> model.idx_sim = pub.timegrids.sim["2001-01-04"] >>> factors.effectivewaterleveldifference = 1.0 >>> model.calc_maxfreedischarge_v1() >>> fluxes.maxfreedischarge maxfreedischarge(4.0) 
- class hydpy.models.dam.dam_model.Calc_ForcedDischarge_V1[source]¶
- Bases: - Method- Calculate the actual forced water release through structures as pumps to prevent a too-high inner water level if a maximum water level at a remote location is not violated. - Requires the control parameters:
- Requires the derived parameters:
- Requires the factor sequences:
- Requires the flux sequence:
- Calculates the flux sequence:
 - In the case of a negative value for - MaxForcedDischarge(e.g. the simulation of irrigation processes), the inner water level will be kept higher than a minimum level if the remote water level is higher than- WaterLevelMaximumThreshold.- Basic equation:
- \[\begin{split}ForcedDischarge = \begin{cases} MaxForcedDischarge \cdot (1 - r_1) \cdot r_2, & | MaxForcedDischarge < 0 \\ MaxForcedDischarge \cdot r_1 \cdot (1 - r_2), & | MaxForcedDischarge \geq 0 \end{cases} \\ \\ r_1 = f_{smooth \, logistic1}(WaterLevel - WaterLevelMaximumThreshold, \, WaterLevelMaximumSmoothPar) \\ r_2 = f_{smooth \, logistic1}(RemoteWaterLevel - RemoteWaterLevelMaximumThreshold, \, RemoteWaterLevelMaximumSmoothPar)\end{split}\]
- Used auxiliary method:
- smooth_logistic1()
 - Examples: - First, we prepare a - UnitTestobject to illustrate how the actual forced discharge depends on the inner and the remote water level:- >>> from hydpy.models.dam import * >>> parameterstep() >>> fluxes.maxforceddischarge = 2.0 >>> from hydpy import UnitTest >>> test = UnitTest(model, model.calc_forceddischarge_v1, ... last_example=21, ... parseqs=(factors.waterlevel, ... factors.remotewaterlevel, ... fluxes.forceddischarge)) >>> test.nexts.waterlevel = numpy.linspace(2.95, 3.15, 21) >>> test.nexts.remotewaterlevel = numpy.linspace(4.85, 5.05, 21) - When setting - WaterLevelMaximumToleranceand- RemoteWaterLevelMaximumToleranceto zero, there is a discontinuous increase from zero to- MaxForcedDischargearound- WaterLevelMaximumThresholdand a discontinuous decrease back to zero around- RemoteWaterLevelMaximumThreshold:- >>> waterlevelmaximumthreshold(3.0) >>> waterlevelmaximumtolerance(0.0) >>> derived.waterlevelmaximumsmoothpar.update() >>> remotewaterlevelmaximumthreshold(5.0) >>> remotewaterlevelmaximumtolerance(0.0) >>> derived.remotewaterlevelmaximumsmoothpar.update() >>> test() | ex. | waterlevel | remotewaterlevel | forceddischarge | --------------------------------------------------------- | 1 | 2.95 | 4.85 | 0.0 | | 2 | 2.96 | 4.86 | 0.0 | | 3 | 2.97 | 4.87 | 0.0 | | 4 | 2.98 | 4.88 | 0.0 | | 5 | 2.99 | 4.89 | 0.0 | | 6 | 3.0 | 4.9 | 1.0 | | 7 | 3.01 | 4.91 | 2.0 | | 8 | 3.02 | 4.92 | 2.0 | | 9 | 3.03 | 4.93 | 2.0 | | 10 | 3.04 | 4.94 | 2.0 | | 11 | 3.05 | 4.95 | 2.0 | | 12 | 3.06 | 4.96 | 2.0 | | 13 | 3.07 | 4.97 | 2.0 | | 14 | 3.08 | 4.98 | 2.0 | | 15 | 3.09 | 4.99 | 2.0 | | 16 | 3.1 | 5.0 | 1.0 | | 17 | 3.11 | 5.01 | 0.0 | | 18 | 3.12 | 5.02 | 0.0 | | 19 | 3.13 | 5.03 | 0.0 | | 20 | 3.14 | 5.04 | 0.0 | | 21 | 3.15 | 5.05 | 0.0 | - For more natural transitions (and in the case of - WaterLevelMaximumTolerance, also for computational efficiency), it is preferable to define tolerance values larger than zero. We set- WaterLevelMaximumToleranceto 15 mm and- RemoteWaterLevelMaximumToleranceto 10 mm:- >>> waterlevelmaximumtolerance(0.015) >>> derived.waterlevelmaximumsmoothpar.update() >>> remotewaterlevelmaximumtolerance(0.01) >>> derived.remotewaterlevelmaximumsmoothpar.update() >>> test() | ex. | waterlevel | remotewaterlevel | forceddischarge | --------------------------------------------------------- | 1 | 2.95 | 4.85 | 0.0 | | 2 | 2.96 | 4.86 | 0.00001 | | 3 | 2.97 | 4.87 | 0.000204 | | 4 | 2.98 | 4.88 | 0.004357 | | 5 | 2.99 | 4.89 | 0.089284 | | 6 | 3.0 | 4.9 | 1.0 | | 7 | 3.01 | 4.91 | 1.910716 | | 8 | 3.02 | 4.92 | 1.995643 | | 9 | 3.03 | 4.93 | 1.999796 | | 10 | 3.04 | 4.94 | 1.99999 | | 11 | 3.05 | 4.95 | 2.0 | | 12 | 3.06 | 4.96 | 2.0 | | 13 | 3.07 | 4.97 | 1.999998 | | 14 | 3.08 | 4.98 | 1.999796 | | 15 | 3.09 | 4.99 | 1.98 | | 16 | 3.1 | 5.0 | 1.0 | | 17 | 3.11 | 5.01 | 0.02 | | 18 | 3.12 | 5.02 | 0.000204 | | 19 | 3.13 | 5.03 | 0.000002 | | 20 | 3.14 | 5.04 | 0.0 | | 21 | 3.15 | 5.05 | 0.0 | - When - MaxForcedDischargeis negative, the flow direction is reversed. Forced discharge will start when the- RemoteWaterLevelMaximumThresholdis higher than 4.9 and drop to zero as soon as the- WaterLevelMaximumThresholdis reached.- >>> fluxes.maxforceddischarge = -2.0 >>> waterlevelmaximumthreshold(3.1) >>> remotewaterlevelmaximumthreshold(4.9) >>> test() | ex. | waterlevel | remotewaterlevel | forceddischarge | --------------------------------------------------------- | 1 | 2.95 | 4.85 | 0.0 | | 2 | 2.96 | 4.86 | 0.0 | | 3 | 2.97 | 4.87 | -0.000002 | | 4 | 2.98 | 4.88 | -0.000204 | | 5 | 2.99 | 4.89 | -0.02 | | 6 | 3.0 | 4.9 | -1.0 | | 7 | 3.01 | 4.91 | -1.98 | | 8 | 3.02 | 4.92 | -1.999796 | | 9 | 3.03 | 4.93 | -1.999998 | | 10 | 3.04 | 4.94 | -2.0 | | 11 | 3.05 | 4.95 | -2.0 | | 12 | 3.06 | 4.96 | -1.99999 | | 13 | 3.07 | 4.97 | -1.999796 | | 14 | 3.08 | 4.98 | -1.995643 | | 15 | 3.09 | 4.99 | -1.910716 | | 16 | 3.1 | 5.0 | -1.0 | | 17 | 3.11 | 5.01 | -0.089284 | | 18 | 3.12 | 5.02 | -0.004357 | | 19 | 3.13 | 5.03 | -0.000204 | | 20 | 3.14 | 5.04 | -0.00001 | | 21 | 3.15 | 5.05 | 0.0 | 
- class hydpy.models.dam.dam_model.Calc_FreeDischarge_V1[source]¶
- Bases: - Method- Calculate the actual water flow through a hydraulic structure like a (flap) sluice that generally depends on the water level gradient but can be suppressed to stop releasing water if a maximum water level at a remote location is violated. - Requires the control parameter:
- Requires the derived parameters:
- Requires the factor sequence:
- Requires the flux sequence:
- Calculates the flux sequence:
- Basic equation:
- \[\begin{split}FreeDischarge = \omega \cdot q_{trimmed} + (1 - \omega) \cdot MaxFreeDischarge \\ \\ \omega = f_{smooth \, logistic1}(RemoteWaterLevelMaximumThreshold - RemoteWaterLevel, \, RemoteWaterLevelMaximumSmoothPar) \\ \\ q_{trimmed} = -f_{smooth \, logistic2}(MaxFreeDischarge, \, DischargeSmoothPar)\end{split}\]
- Used auxiliary methods:
- smooth_logistic1()- smooth_logistic2()
 - Examples: - First, we prepare a - UnitTestobject to illustrate how the actual free discharge depends on the possible free discharge and the remote water level:- >>> from hydpy.models.dam import * >>> parameterstep() >>> fluxes.maxfreedischarge = 2.0 >>> from hydpy import UnitTest >>> test = UnitTest(model, model.calc_freedischarge_v1, ... last_example=21, ... parseqs=(factors.remotewaterlevel, ... fluxes.maxfreedischarge, ... fluxes.freedischarge)) - We constantly decrease - MaxFreeDischargeand increase- RemoteWaterLevelbetween successive examples:- >>> test.nexts.maxfreedischarge = numpy.linspace(0.15, -0.05, 21) >>> test.nexts.remotewaterlevel = numpy.linspace(4.95, 5.15, 21) - In the first two experiments, the remote water level overshoots its threshold while the possible discharge is still positive: - >>> remotewaterlevelmaximumthreshold(5.0) - When setting - RemoteWaterLevelMaximumToleranceand- DischargeToleranceto zero, the actual discharge drops suddenly to zero when the remote water level reaches- RemoteWaterLevelMaximumThresholdand stays there until the possible discharge becomes negative:- >>> remotewaterlevelmaximumtolerance(0.0) >>> derived.remotewaterlevelmaximumsmoothpar.update() >>> dischargetolerance(0.0) >>> derived.dischargesmoothpar.update() >>> test() | ex. | remotewaterlevel | maxfreedischarge | freedischarge | ------------------------------------------------------------- | 1 | 4.95 | 0.15 | 0.15 | | 2 | 4.96 | 0.14 | 0.14 | | 3 | 4.97 | 0.13 | 0.13 | | 4 | 4.98 | 0.12 | 0.12 | | 5 | 4.99 | 0.11 | 0.11 | | 6 | 5.0 | 0.1 | 0.05 | | 7 | 5.01 | 0.09 | 0.0 | | 8 | 5.02 | 0.08 | 0.0 | | 9 | 5.03 | 0.07 | 0.0 | | 10 | 5.04 | 0.06 | 0.0 | | 11 | 5.05 | 0.05 | 0.0 | | 12 | 5.06 | 0.04 | 0.0 | | 13 | 5.07 | 0.03 | 0.0 | | 14 | 5.08 | 0.02 | 0.0 | | 15 | 5.09 | 0.01 | 0.0 | | 16 | 5.1 | 0.0 | 0.0 | | 17 | 5.11 | -0.01 | -0.01 | | 18 | 5.12 | -0.02 | -0.02 | | 19 | 5.13 | -0.03 | -0.03 | | 20 | 5.14 | -0.04 | -0.04 | | 21 | 5.15 | -0.05 | -0.05 | - For more natural transitions (and in the case of - DischargeTolerance, also for computational efficiency), defining tolerance values larger than zero is preferable. We set- RemoteWaterLevelMaximumToleranceto 10 mm and- DischargeToleranceto 0.01 m³/s:- >>> remotewaterlevelmaximumtolerance(0.01) >>> derived.remotewaterlevelmaximumsmoothpar.update() >>> dischargetolerance(0.01) >>> derived.dischargesmoothpar.update() >>> test() | ex. | remotewaterlevel | maxfreedischarge | freedischarge | ------------------------------------------------------------- | 1 | 4.95 | 0.15 | 0.15 | | 2 | 4.96 | 0.14 | 0.14 | | 3 | 4.97 | 0.13 | 0.13 | | 4 | 4.98 | 0.12 | 0.119988 | | 5 | 4.99 | 0.11 | 0.108899 | | 6 | 5.0 | 0.1 | 0.049916 | | 7 | 5.01 | 0.09 | 0.000631 | | 8 | 5.02 | 0.08 | -0.000429 | | 9 | 5.03 | 0.07 | -0.000704 | | 10 | 5.04 | 0.06 | -0.001127 | | 11 | 5.05 | 0.05 | -0.001794 | | 12 | 5.06 | 0.04 | -0.00283 | | 13 | 5.07 | 0.03 | -0.004404 | | 14 | 5.08 | 0.02 | -0.006723 | | 15 | 5.09 | 0.01 | -0.01 | | 16 | 5.1 | 0.0 | -0.014404 | | 17 | 5.11 | -0.01 | -0.02 | | 18 | 5.12 | -0.02 | -0.026723 | | 19 | 5.13 | -0.03 | -0.034404 | | 20 | 5.14 | -0.04 | -0.04283 | | 21 | 5.15 | -0.05 | -0.051794 | - In the following two experiments, we let - MaxFreeDischargereach 0 m³/s earlier and increase- RemoteWaterLevelMaximumThresholdso that its violation occurs later:- >>> test.nexts.maxfreedischarge = numpy.linspace(0.05, -0.15, 21) >>> remotewaterlevelmaximumthreshold(5.1) - Without smoothing, free discharge now strictly follows potential discharge: - >>> remotewaterlevelmaximumtolerance(0.0) >>> derived.remotewaterlevelmaximumsmoothpar.update() >>> dischargetolerance(0.0) >>> derived.dischargesmoothpar.update() >>> test() | ex. | remotewaterlevel | maxfreedischarge | freedischarge | ------------------------------------------------------------- | 1 | 4.95 | 0.05 | 0.05 | | 2 | 4.96 | 0.04 | 0.04 | | 3 | 4.97 | 0.03 | 0.03 | | 4 | 4.98 | 0.02 | 0.02 | | 5 | 4.99 | 0.01 | 0.01 | | 6 | 5.0 | 0.0 | 0.0 | | 7 | 5.01 | -0.01 | -0.01 | | 8 | 5.02 | -0.02 | -0.02 | | 9 | 5.03 | -0.03 | -0.03 | | 10 | 5.04 | -0.04 | -0.04 | | 11 | 5.05 | -0.05 | -0.05 | | 12 | 5.06 | -0.06 | -0.06 | | 13 | 5.07 | -0.07 | -0.07 | | 14 | 5.08 | -0.08 | -0.08 | | 15 | 5.09 | -0.09 | -0.09 | | 16 | 5.1 | -0.1 | -0.1 | | 17 | 5.11 | -0.11 | -0.11 | | 18 | 5.12 | -0.12 | -0.12 | | 19 | 5.13 | -0.13 | -0.13 | | 20 | 5.14 | -0.14 | -0.14 | | 21 | 5.15 | -0.15 | -0.15 | - With smoothing, there is a slight deviation between potential and actual discharge: - ToDo: Is there a smoothing alternative that circumvents this deviation without
- complicating the calculation too much? (low priority). 
 - >>> remotewaterlevelmaximumtolerance(0.01) >>> derived.remotewaterlevelmaximumsmoothpar.update() >>> dischargetolerance(0.01) >>> derived.dischargesmoothpar.update() >>> test() | ex. | remotewaterlevel | maxfreedischarge | freedischarge | ------------------------------------------------------------- | 1 | 4.95 | 0.05 | 0.05 | | 2 | 4.96 | 0.04 | 0.04 | | 3 | 4.97 | 0.03 | 0.03 | | 4 | 4.98 | 0.02 | 0.02 | | 5 | 4.99 | 0.01 | 0.01 | | 6 | 5.0 | 0.0 | 0.0 | | 7 | 5.01 | -0.01 | -0.01 | | 8 | 5.02 | -0.02 | -0.02 | | 9 | 5.03 | -0.03 | -0.03 | | 10 | 5.04 | -0.04 | -0.04 | | 11 | 5.05 | -0.05 | -0.05 | | 12 | 5.06 | -0.06 | -0.06 | | 13 | 5.07 | -0.07 | -0.07 | | 14 | 5.08 | -0.08 | -0.08 | | 15 | 5.09 | -0.09 | -0.090003 | | 16 | 5.1 | -0.1 | -0.100084 | | 17 | 5.11 | -0.11 | -0.110103 | | 18 | 5.12 | -0.12 | -0.120064 | | 19 | 5.13 | -0.13 | -0.13004 | | 20 | 5.14 | -0.14 | -0.140025 | | 21 | 5.15 | -0.15 | -0.150015 | 
- class hydpy.models.dam.dam_model.Calc_Outflow_V1[source]¶
- Bases: - Method- Calculate the total outflow of the dam. - Requires the flux sequences:
- Calculates the flux sequence:
 - Note that the maximum function is used to prevent from negative outflow values, which could otherwise occur within the required level of numerical accuracy. - Basic equation:
- \(Outflow = max(ActualRelease + FloodDischarge, 0.)\) 
 - Example: - >>> from hydpy.models.dam import * >>> parameterstep() >>> fluxes.actualrelease = 2.0 >>> fluxes.flooddischarge = 3.0 >>> model.calc_outflow_v1() >>> fluxes.outflow outflow(5.0) >>> fluxes.flooddischarge = -3.0 >>> model.calc_outflow_v1() >>> fluxes.outflow outflow(0.0) 
- class hydpy.models.dam.dam_model.Calc_AllowedDischarge_V1[source]¶
- Bases: - Method- Calculate the maximum discharge not leading to exceedance of the allowed water level drop. - Requires the control parameter:
- Requires the derived parameter:
- Requires the flux sequences:
- Requires the aide sequence:
- Calculates the aide sequence:
- Basic equation:
- \(Outflow = AllowedWaterLevelDrop \cdot SurfaceArea + Inflow + AdjustedPrecipitation - AdjustedEvaporation + Exchange\) 
 - Example: - >>> from hydpy.models.dam import * >>> parameterstep("1d") >>> simulationstep("1h") >>> allowedwaterleveldrop(0.1) >>> derived.seconds.update() >>> fluxes.adjustedprecipitation = 1.0 >>> fluxes.inflow = 3.0 >>> fluxes.actualevaporation = 2.0 >>> fluxes.exchange = 4.0 >>> aides.surfacearea = 0.864 >>> model.calc_alloweddischarge_v1() >>> aides.alloweddischarge alloweddischarge(7.0) 
- class hydpy.models.dam.dam_model.Calc_AllowedDischarge_V2[source]¶
- Bases: - Method- Calculate the maximum discharge not leading to exceedance of the allowed water level drop. - Requires the control parameters:
- Requires the derived parameters:
- Requires the flux sequence:
- Requires the aide sequence:
- Calculates the aide sequence:
- Used additional methods:
- smooth_min1()
- Basic (discontinuous) equation:
- \(Outflow = min(AllowedRelease, AllowedWaterLevelDrop \cdot SurfaceArea + Inflow\) 
 - Example: - >>> from hydpy import pub >>> pub.timegrids = "2001.03.30", "2001.04.03", "1h" - >>> from hydpy.models.dam import * >>> parameterstep("1d") - >>> allowedwaterleveldrop(0.1) >>> allowedrelease(_11_01_12=1.0, _03_31_12=1.0, ... _04_01_00=3.0, _04_02_00=3.0, ... _04_02_12=5.0, _10_31_12=5.0) - >>> derived.seconds.update() >>> derived.toy.update() - >>> aides.surfacearea = 0.864 >>> from hydpy import UnitTest >>> test = UnitTest(model, ... model.calc_alloweddischarge_v2, ... last_example=7, ... parseqs=(fluxes.inflow, ... aides.alloweddischarge)) >>> import numpy >>> test.nexts.inflow = 1.0, 1.5, 1.9, 2.0, 2.1, 2.5, 3.0 - >>> model.idx_sim = pub.timegrids.init["2001-04-01"] - >>> dischargetolerance(0.0) >>> derived.dischargesmoothpar.update() >>> test() | ex. | inflow | alloweddischarge | ----------------------------------- | 1 | 1.0 | 2.0 | | 2 | 1.5 | 2.5 | | 3 | 1.9 | 2.9 | | 4 | 2.0 | 3.0 | | 5 | 2.1 | 3.0 | | 6 | 2.5 | 3.0 | | 7 | 3.0 | 3.0 | - >>> dischargetolerance(0.1) >>> derived.dischargesmoothpar.update() >>> test() | ex. | inflow | alloweddischarge | ----------------------------------- | 1 | 1.0 | 2.0 | | 2 | 1.5 | 2.499987 | | 3 | 1.9 | 2.89 | | 4 | 2.0 | 2.959017 | | 5 | 2.1 | 2.99 | | 6 | 2.5 | 2.999987 | | 7 | 3.0 | 3.0 | 
- class hydpy.models.dam.dam_model.Calc_Outflow_V2[source]¶
- Bases: - Method- Calculate the total outflow of the dam, taking the allowed water discharge into account. - Requires the derived parameter:
- Requires the flux sequence:
- Requires the aide sequence:
- Calculates the flux sequence:
- Used additional method:
- Basic (discontinuous) equation:
- \(Outflow = min(FloodDischarge, AllowedDischarge)\) 
 - Examples: - >>> from hydpy.models.dam import * >>> parameterstep() >>> from hydpy import UnitTest >>> test = UnitTest(model, ... model.calc_outflow_v2, ... last_example=8, ... parseqs=(fluxes.flooddischarge, ... fluxes.outflow)) >>> test.nexts.flooddischarge = range(8) - >>> aides.alloweddischarge = 3.0 - >>> dischargetolerance(0.0) >>> derived.dischargesmoothpar.update() >>> test() | ex. | flooddischarge | outflow | ---------------------------------- | 1 | 0.0 | 0.0 | | 2 | 1.0 | 1.0 | | 3 | 2.0 | 2.0 | | 4 | 3.0 | 3.0 | | 5 | 4.0 | 3.0 | | 6 | 5.0 | 3.0 | | 7 | 6.0 | 3.0 | | 8 | 7.0 | 3.0 | - >>> dischargetolerance(1.0) >>> derived.dischargesmoothpar.update() >>> test() | ex. | flooddischarge | outflow | ----------------------------------- | 1 | 0.0 | 0.0 | | 2 | 1.0 | 0.999651 | | 3 | 2.0 | 1.99 | | 4 | 3.0 | 2.794476 | | 5 | 4.0 | 2.985755 | | 6 | 5.0 | 2.991603 | | 7 | 6.0 | 2.991773 | | 8 | 7.0 | 2.991779 | - >>> aides.alloweddischarge = 0.0 >>> test() | ex. | flooddischarge | outflow | ---------------------------------- | 1 | 0.0 | 0.0 | | 2 | 1.0 | 0.0 | | 3 | 2.0 | 0.0 | | 4 | 3.0 | 0.0 | | 5 | 4.0 | 0.0 | | 6 | 5.0 | 0.0 | | 7 | 6.0 | 0.0 | | 8 | 7.0 | 0.0 | 
- class hydpy.models.dam.dam_model.Calc_Outflow_V3[source]¶
- Bases: - Method- Take the forced discharge as the only outflow. - Requires the flux sequence:
- Calculates the flux sequence:
- Basic equation:
- \(Outflow = ForcedDischaerge\) 
 - Example: - >>> from hydpy.models.dam import * >>> parameterstep() >>> fluxes.forceddischarge = 2.0 >>> model.calc_outflow_v3() >>> fluxes.outflow outflow(2.0) 
- class hydpy.models.dam.dam_model.Calc_Outflow_V4[source]¶
- Bases: - Method- Take the free discharge as the only outflow. - Requires the flux sequence:
- Calculates the flux sequence:
- Basic equation:
- \(Outflow = FreeDischaerge\) 
 - Example: - >>> from hydpy.models.dam import * >>> parameterstep() >>> fluxes.freedischarge = 2.0 >>> model.calc_outflow_v4() >>> fluxes.outflow outflow(2.0) 
- class hydpy.models.dam.dam_model.Calc_Outflow_V5[source]¶
- Bases: - Method- Calculate the total outflow as the sum of free and forced discharge. - Requires the flux sequences:
- Calculates the flux sequence:
- Basic equation:
- \(Outflow = FreeDischarge + ForcedDischarge\) 
 - Example: - >>> from hydpy.models.dam import * >>> parameterstep() >>> fluxes.freedischarge = 2.0 >>> fluxes.forceddischarge = 3.0 >>> model.calc_outflow_v5() >>> fluxes.outflow outflow(5.0) 
- class hydpy.models.dam.dam_model.Update_WaterVolume_V1[source]¶
- Bases: - Method- Update the actual water volume. - Requires the derived parameter:
- Requires the flux sequences:
- Updates the state sequence:
- Basic equation:
- \(\frac{d}{dt}WaterVolume = 1e-6 \cdot (AdjustedPrecipitation - AdjustedEvaporation - Inflow - Outflow)\) 
 - Example: - >>> from hydpy.models.dam import * >>> parameterstep() >>> derived.seconds = 2e6 >>> states.watervolume.old = 5.0 >>> fluxes.adjustedprecipitation = 1.0 >>> fluxes.actualevaporation = 2.0 >>> fluxes.inflow = 3.0 >>> fluxes.outflow = 4.0 >>> model.update_watervolume_v1() >>> states.watervolume watervolume(1.0) 
- class hydpy.models.dam.dam_model.Update_WaterVolume_V2[source]¶
- Bases: - Method- Update the actual water volume. - Requires the derived parameter:
- Requires the flux sequences:
- AdjustedPrecipitation- ActualEvaporation- Inflow- Outflow- ActualRemoteRelease
- Updates the state sequence:
- Basic equation:
- \(\frac{d}{dt}WaterVolume = 10^{-6} \cdot (AdjustedPrecipitation - AdjustedEvaporation - Inflow - Outflow - ActualRemoteRelease)\) 
 - Example: - >>> from hydpy.models.dam import * >>> parameterstep() >>> derived.seconds = 2e6 >>> states.watervolume.old = 9.0 >>> fluxes.adjustedprecipitation = 2.0 >>> fluxes.actualevaporation = 1.0 >>> fluxes.inflow = 4.0 >>> fluxes.outflow = 3.0 >>> fluxes.actualremoterelease = 6.0 >>> model.update_watervolume_v2() >>> states.watervolume watervolume(1.0) 
- class hydpy.models.dam.dam_model.Update_WaterVolume_V3[source]¶
- Bases: - Method- Update the actual water volume. - Requires the derived parameter:
- Requires the flux sequences:
- AdjustedPrecipitation- ActualEvaporation- Inflow- Outflow- ActualRemoteRelease- ActualRemoteRelief
- Updates the state sequence:
- Basic equation:
- \(\frac{d}{dt}WaterVolume = 10^{-6} \cdot (AdjustedPrecipitation - AdjustedEvaporation + Inflow - Outflow - ActualRemoteRelease - ActualRemoteRelief)\) 
 - Example: - >>> from hydpy.models.dam import * >>> parameterstep() >>> derived.seconds = 2e6 >>> states.watervolume.old = 6.0 >>> fluxes.adjustedprecipitation = 5.0 >>> fluxes.actualevaporation = 4.0 >>> fluxes.inflow = 2.0 >>> fluxes.outflow = 3.0 >>> fluxes.actualremoterelease = 1.0 >>> fluxes.actualremoterelief = 0.5 >>> model.update_watervolume_v3() >>> states.watervolume watervolume(3.0) 
- class hydpy.models.dam.dam_model.Update_WaterVolume_V4[source]¶
- Bases: - Method- Update the actual water volume. - Requires the derived parameter:
- Requires the flux sequences:
- AdjustedPrecipitation- ActualEvaporation- Inflow- Outflow- Exchange
- Updates the state sequence:
- Basic equation:
- \(\frac{d}{dt}WaterVolume = 1e-6 \cdot (AdjustedPrecipitation - AdjustedEvaporation - Inflow - Outflow + Exchange)\) 
 - Example: - >>> from hydpy.models.dam import * >>> parameterstep() >>> derived.seconds = 2e6 >>> states.watervolume.old = 5.0 >>> fluxes.adjustedprecipitation = 1.0 >>> fluxes.actualevaporation = 2.0 >>> fluxes.inflow = 3.0 >>> fluxes.outflow = 4.0 >>> fluxes.exchange = 5.0 >>> model.update_watervolume_v4() >>> states.watervolume watervolume(11.0) 
- class hydpy.models.dam.dam_model.Pass_Outflow_V1[source]¶
- Bases: - Method- Update the outlet link sequence - Q.
- class hydpy.models.dam.dam_model.Pass_ActualRemoteRelease_V1[source]¶
- Bases: - Method- Update the outlet link sequence - S.- Requires the flux sequence:
- Calculates the outlet sequence:
- Basic equation:
- \(S = ActualRemoteRelease\) 
 
- class hydpy.models.dam.dam_model.Pass_ActualRemoteRelief_V1[source]¶
- Bases: - Method- Update the outlet link sequence - R.- Requires the flux sequence:
- Calculates the outlet sequence:
- Basic equation:
- \(R = ActualRemoteRelief\) 
 
- class hydpy.models.dam.dam_model.Pass_MissingRemoteRelease_V1[source]¶
- Bases: - Method- Update the outlet link sequence - D.- Requires the flux sequence:
- Calculates the sender sequence:
- Basic equation:
- \(D = MissingRemoteRelease\) 
 
- class hydpy.models.dam.dam_model.Pass_AllowedRemoteRelief_V1[source]¶
- Bases: - Method- Update the outlet link sequence - R.- Requires the flux sequence:
- Calculates the sender sequence:
- Basic equation:
- \(R = AllowedRemoteRelief\) 
 
- class hydpy.models.dam.dam_model.Pass_RequiredRemoteSupply_V1[source]¶
- Bases: - Method- Update the outlet link sequence - S.- Requires the flux sequence:
- Calculates the sender sequence:
- Basic equation:
- \(S = RequiredRemoteSupply\) 
 
- class hydpy.models.dam.dam_model.Update_LoggedOutflow_V1[source]¶
- Bases: - Method- Log a new entry of discharge at a cross section far downstream. - Requires the control parameter:
- Requires the flux sequence:
- Updates the log sequence:
 - Example: - The following example shows that, with each new method call, the three memorized values are successively moved to the right and the respective new value is stored on the bare left position: - >>> from hydpy.models.dam import * >>> parameterstep() >>> nmblogentries(3) >>> logs.loggedoutflow = 0.0 >>> from hydpy import UnitTest >>> test = UnitTest(model, ... model.update_loggedoutflow_v1, ... last_example=4, ... parseqs=(fluxes.outflow, ... logs.loggedoutflow)) >>> test.nexts.outflow = [1.0, 3.0, 2.0, 4.0] >>> del test.inits.loggedoutflow >>> test() | ex. | outflow | loggedoutflow | ------------------------------------------- | 1 | 1.0 | 1.0 0.0 0.0 | | 2 | 3.0 | 3.0 1.0 0.0 | | 3 | 2.0 | 2.0 3.0 1.0 | | 4 | 4.0 | 4.0 2.0 3.0 | 
- class hydpy.models.dam.dam_model.Main_PrecipModel_V2[source]¶
- Bases: - ELSModel- Base class for HydPy-Dam models that use submodels that comply with the - PrecipModel_V2interface.- precipmodel: SubmodelProperty¶
 - precipmodel_is_mainmodel¶
 - precipmodel_typeid¶
 - add_precipmodel_v2¶
- Initialise the given precipmodel that follows the - PrecipModel_V2interface.- >>> from hydpy.models.dam_v001 import * >>> parameterstep() >>> surfacearea(2.0) >>> with model.add_precipmodel_v2("meteo_precip_io"): ... nmbhru ... hruarea ... precipitationfactor(1.5) nmbhru(1) hruarea(2.0) >>> model.precipmodel.parameters.control.precipitationfactor precipitationfactor(1.5) 
 - REUSABLE_METHODS: ClassVar[tuple[type[ReusableMethod], ...]] = ()¶
 
- class hydpy.models.dam.dam_model.Main_PEModel_V1[source]¶
- Bases: - ELSModel- Base class for HydPy-Dam models that use submodels that comply with the - PETModel_V1interface.- pemodel: SubmodelProperty¶
 - pemodel_is_mainmodel¶
 - pemodel_typeid¶
 - add_pemodel_v1¶
- Initialise the given pemodel that follows the - PETModel_V1interface.- >>> from hydpy.models.dam_v001 import * >>> parameterstep() >>> surfacearea(2.0) >>> with model.add_pemodel_v1("evap_ret_tw2002"): ... nmbhru ... hruarea ... evapotranspirationfactor(1.5) nmbhru(1) hruarea(2.0) - >>> model.pemodel.parameters.control.evapotranspirationfactor evapotranspirationfactor(1.5) 
 - REUSABLE_METHODS: ClassVar[tuple[type[ReusableMethod], ...]] = ()¶
 
Parameter Features¶
Control parameters¶
- class hydpy.models.dam.ControlParameters(master: Parameters, cls_fastaccess: type[FastAccessParameter] | None = None, cymodel: CyModelProtocol | None = None)
- Bases: - SubParameters- Control parameters of model dam. - The following classes are selected:
- SurfaceArea()Average size of the water surface [km²].
- CatchmentArea()Size of the catchment draining into the dam [km²].
- NmbLogEntries()Number of log entries for certain variables [-].
- CorrectionPrecipitation()Precipitation correction factor [-].
- CorrectionEvaporation()Evaporation correction factor [-].
- WeightEvaporation()Time weighting factor for evaporation [-].
- RemoteDischargeMinimum()Discharge threshold of a cross-section far downstream not to be undercut by the actual discharge [m³/s].
- RemoteDischargeSafety()Safety factor for reducing the risk of insufficient water release [m³/s].
- WaterLevel2PossibleRemoteRelief()An interpolation function describing the relationship between water level and the highest possible water release used to relieve the dam during high flow conditions [-].
- RemoteReliefTolerance()A tolerance value for- PossibleRemoteRelief[m³/s].
- NearDischargeMinimumThreshold()Discharge threshold of a cross-section near the dam not to be undercut by the actual discharge [m³/s].
- NearDischargeMinimumTolerance()A tolerance value for the “near discharge minimum” [m³/s].
- RestrictTargetedRelease()A flag indicating whether low flow variability has to be preserved or not [-].
- WaterVolumeMinimumThreshold()The minimum operating water volume of the dam [million m³].
- WaterLevelMinimumThreshold()The minimum operating water level of the dam [m].
- WaterLevelMinimumTolerance()A tolerance value for the minimum operating water level [m].
- WaterLevelMaximumThreshold()The water level not to be exceeded [m].
- WaterLevelMaximumTolerance()A tolerance value for the water level maximum [m].
- RemoteWaterLevelMaximumThreshold()The remote water level not to be exceeded [m].
- RemoteWaterLevelMaximumTolerance()Tolerance value for the remote water level maximum [m].
- ThresholdEvaporation()The water level at which actual evaporation is 50 % of potential evaporation [m].
- ToleranceEvaporation()A tolerance value defining the steepness of the transition of actual evaporation between zero and potential evaporation [m].
- WaterLevelMinimumRemoteThreshold()The minimum operating water level of the dam regarding remote water supply [m].
- WaterLevelMinimumRemoteTolerance()A tolerance value for the minimum operating water level regarding remote water supply [m].
- HighestRemoteRelief()The highest possible relief discharge from another location [m³/s].
- WaterLevelReliefThreshold()The threshold water level of the dam regarding the allowed relief discharge from another location [m].
- WaterLevelReliefTolerance()A tolerance value for parameter- WaterLevelReliefThreshold[m].
- HighestRemoteSupply()The highest possible supply discharge from another location [m³/s].
- WaterLevelSupplyThreshold()The threshold water level of the dam regarding the required supply discharge from another location [m].
- WaterLevelSupplyTolerance()A tolerance value for parameter- WaterLevelSupplyThreshold[m].
- HighestRemoteDischarge()The highest possible discharge between two remote locations [m³/s].
- HighestRemoteTolerance()Smoothing parameter associated with- HighestRemoteDischarge[m³/s].
- WaterVolume2WaterLevel()An interpolation function that describes the relationship between water level and water volume [-].
- WaterLevel2FloodDischarge()An interpolation function that describesg the relationship between flood discharge and water volume [-].
- WaterLevelDifference2MaxForcedDischarge()An interpolation function that describes the relationship between the highest possible forced discharge and the water level difference [-].
- WaterLevelDifference2MaxFreeDischarge()An interpolation function that describes the relationship between the highest possible free discharge and the water level difference [-].
- AllowedWaterLevelDrop()The highest allowed water level decrease [m/T].
- AllowedRelease()The maximum water release not causing any harm downstream [m³/s].
- TargetVolume()The desired volume of water required within the dam at specific times of the year [Mio. m³].
- TargetRangeAbsolute()The absolute interpolation range related to parameter- TargetVolume[Mio. m³].
- TargetRangeRelative()The relative interpolation range related to parameter- TargetVolume[-].
- VolumeTolerance()Smoothing parameter for volume-related smoothing operations [Mio. m³].
- DischargeTolerance()Smoothing parameter for discharge-related smoothing operations [m³/s].
- CrestLevel()The crest level of a weir [m].
- CrestLevelTolerance()A tolerance value for the crest level of a weir [m].
 
 
- class hydpy.models.dam.dam_control.SurfaceArea(subvars: SubParameters)[source]¶
- Bases: - Parameter- Average size of the water surface [km²]. 
- class hydpy.models.dam.dam_control.CatchmentArea(subvars: SubParameters)[source]¶
- Bases: - Parameter- Size of the catchment draining into the dam [km²]. 
- class hydpy.models.dam.dam_control.NmbLogEntries(subvars: SubParameters)[source]¶
- Bases: - Parameter- Number of log entries for certain variables [-]. - Required by the methods:
- Calc_NaturalRemoteDischarge_V1- Calc_RemoteFailure_V1- Update_LoggedOutflow_V1- Update_LoggedTotalRemoteDischarge_V1
 - Note that setting a new value by calling the parameter object sets the shapes of all associated log sequences automatically, except those with a predefined default shape: - >>> from hydpy.models.dam import * >>> parameterstep() >>> nmblogentries(3) >>> for seq in logs: ... print(seq) loggedtotalremotedischarge(nan, nan, nan) loggedoutflow(nan, nan, nan) loggedadjustedevaporation(nan) loggedrequiredremoterelease(nan) loggedallowedremoterelief(nan) loggedouterwaterlevel(nan) loggedremotewaterlevel(nan) - To prevent losing information, updating parameter - NmbLogEntriesresets the shape of the relevant log sequences only when necessary:- >>> logs.loggedtotalremotedischarge = 1.0 >>> nmblogentries(3) >>> logs.loggedtotalremotedischarge loggedtotalremotedischarge(1.0, 1.0, 1.0) 
- class hydpy.models.dam.dam_control.CorrectionPrecipitation(subvars: SubParameters)[source]¶
- Bases: - Parameter- Precipitation correction factor [-]. - Required by the method:
 
- class hydpy.models.dam.dam_control.CorrectionEvaporation(subvars: SubParameters)[source]¶
- Bases: - Parameter- Evaporation correction factor [-]. - Required by the method:
 
- class hydpy.models.dam.dam_control.WeightEvaporation(subvars: SubParameters)[source]¶
- Bases: - Parameter- Time weighting factor for evaporation [-]. - Required by the method:
 
- class hydpy.models.dam.dam_control.RemoteDischargeMinimum(subvars)[source]¶
- Bases: - SeasonalParameter- Discharge threshold of a cross-section far downstream not to be undercut by the actual discharge [m³/s]. - Required by the methods:
 
- class hydpy.models.dam.dam_control.RemoteDischargeSafety(subvars)[source]¶
- Bases: - SeasonalParameter- Safety factor for reducing the risk of insufficient water release [m³/s]. - Required by the method:
 
- class hydpy.models.dam.dam_control.WaterLevel2PossibleRemoteRelief(subvars: SubParameters)[source]¶
- Bases: - SimpleInterpolator- An interpolation function describing the relationship between water level and the highest possible water release used to relieve the dam during high flow conditions [-]. - Required by the method:
 - XLABEL = 'water level [m]'¶
 - YLABEL = 'possible remote relieve [m³/s]'¶
 
- class hydpy.models.dam.dam_control.RemoteReliefTolerance(subvars: SubParameters)[source]¶
- Bases: - Parameter- A tolerance value for - PossibleRemoteRelief[m³/s].- Required by the method:
 
- class hydpy.models.dam.dam_control.NearDischargeMinimumThreshold(subvars)[source]¶
- Bases: - SeasonalParameter- Discharge threshold of a cross-section near the dam not to be undercut by the actual discharge [m³/s]. - Required by the methods:
- Calc_ActualRelease_V3- Calc_RequiredRelease_V1- Calc_RequiredRelease_V2- Calc_TargetedRelease_V1
 
- class hydpy.models.dam.dam_control.NearDischargeMinimumTolerance(subvars)[source]¶
- Bases: - SeasonalParameter- A tolerance value for the “near discharge minimum” [m³/s]. 
- class hydpy.models.dam.dam_control.RestrictTargetedRelease(subvars: SubParameters)[source]¶
- Bases: - Parameter- A flag indicating whether low flow variability has to be preserved or not [-]. - Required by the method:
 
- class hydpy.models.dam.dam_control.WaterVolumeMinimumThreshold(subvars)[source]¶
- Bases: - SeasonalParameter- The minimum operating water volume of the dam [million m³]. - Required by the method:
 
- class hydpy.models.dam.dam_control.WaterLevelMinimumThreshold(subvars: SubParameters)[source]¶
- Bases: - Parameter- The minimum operating water level of the dam [m]. - Required by the methods:
 
- class hydpy.models.dam.dam_control.WaterLevelMinimumTolerance(subvars: SubParameters)[source]¶
- Bases: - Parameter- A tolerance value for the minimum operating water level [m]. 
- class hydpy.models.dam.dam_control.WaterLevelMaximumThreshold(subvars: SubParameters)[source]¶
- Bases: - Parameter- The water level not to be exceeded [m]. - Required by the method:
 
- class hydpy.models.dam.dam_control.WaterLevelMaximumTolerance(subvars: SubParameters)[source]¶
- Bases: - Parameter- A tolerance value for the water level maximum [m]. 
- class hydpy.models.dam.dam_control.RemoteWaterLevelMaximumThreshold(subvars: SubParameters)[source]¶
- Bases: - Parameter- The remote water level not to be exceeded [m]. - Required by the methods:
 
- class hydpy.models.dam.dam_control.RemoteWaterLevelMaximumTolerance(subvars: SubParameters)[source]¶
- Bases: - Parameter- Tolerance value for the remote water level maximum [m]. 
- class hydpy.models.dam.dam_control.ThresholdEvaporation(subvars: SubParameters)[source]¶
- Bases: - Parameter- The water level at which actual evaporation is 50 % of potential evaporation [m]. - Required by the method:
 
- class hydpy.models.dam.dam_control.ToleranceEvaporation(subvars: SubParameters)[source]¶
- Bases: - Parameter- A tolerance value defining the steepness of the transition of actual evaporation between zero and potential evaporation [m]. 
- class hydpy.models.dam.dam_control.WaterLevelMinimumRemoteThreshold(subvars: SubParameters)[source]¶
- Bases: - Parameter- The minimum operating water level of the dam regarding remote water supply [m]. - Required by the method:
 
- class hydpy.models.dam.dam_control.WaterLevelMinimumRemoteTolerance(subvars: SubParameters)[source]¶
- Bases: - Parameter- A tolerance value for the minimum operating water level regarding remote water supply [m]. 
- class hydpy.models.dam.dam_control.HighestRemoteRelief(subvars)[source]¶
- Bases: - SeasonalParameter- The highest possible relief discharge from another location [m³/s]. - Required by the method:
 
- class hydpy.models.dam.dam_control.WaterLevelReliefThreshold(subvars)[source]¶
- Bases: - SeasonalParameter- The threshold water level of the dam regarding the allowed relief discharge from another location [m]. - Required by the method:
 
- class hydpy.models.dam.dam_control.WaterLevelReliefTolerance(subvars)[source]¶
- Bases: - SeasonalParameter- A tolerance value for parameter - WaterLevelReliefThreshold[m].
- class hydpy.models.dam.dam_control.HighestRemoteSupply(subvars)[source]¶
- Bases: - SeasonalParameter- The highest possible supply discharge from another location [m³/s]. - Required by the method:
 
- class hydpy.models.dam.dam_control.WaterLevelSupplyThreshold(subvars)[source]¶
- Bases: - SeasonalParameter- The threshold water level of the dam regarding the required supply discharge from another location [m]. - Required by the method:
 
- class hydpy.models.dam.dam_control.WaterLevelSupplyTolerance(subvars)[source]¶
- Bases: - SeasonalParameter- A tolerance value for parameter - WaterLevelSupplyThreshold[m].
- class hydpy.models.dam.dam_control.HighestRemoteDischarge(subvars: SubParameters)[source]¶
- Bases: - Parameter- The highest possible discharge between two remote locations [m³/s]. - Required by the methods:
 
- class hydpy.models.dam.dam_control.HighestRemoteTolerance(subvars: SubParameters)[source]¶
- Bases: - Parameter- Smoothing parameter associated with - HighestRemoteDischarge[m³/s].
- class hydpy.models.dam.dam_control.WaterVolume2WaterLevel(subvars: SubParameters)[source]¶
- Bases: - SimpleInterpolator- An interpolation function that describes the relationship between water level and water volume [-]. - Required by the methods:
 - XLABEL = 'water volume [million m³]'¶
 - YLABEL = 'water level [m]'¶
 
- class hydpy.models.dam.dam_control.WaterLevel2FloodDischarge(subvars: SubParameters)[source]¶
- Bases: - SeasonalInterpolator- An interpolation function that describesg the relationship between flood discharge and water volume [-]. - Required by the method:
 - XLABEL = 'water level [m]'¶
 - YLABEL = 'flood discharge [m³/s]'¶
 
- class hydpy.models.dam.dam_control.WaterLevelDifference2MaxForcedDischarge(subvars: SubParameters)[source]¶
- Bases: - SeasonalInterpolator- An interpolation function that describes the relationship between the highest possible forced discharge and the water level difference [-]. - Required by the method:
 - XLABEL = 'water level difference [m]'¶
 - YLABEL = 'max. forced discharge [m³/s]'¶
 
- class hydpy.models.dam.dam_control.WaterLevelDifference2MaxFreeDischarge(subvars: SubParameters)[source]¶
- Bases: - SeasonalInterpolator- An interpolation function that describes the relationship between the highest possible free discharge and the water level difference [-]. - Required by the method:
 - XLABEL = 'water level difference [m]'¶
 - YLABEL = 'max. free discharge [m³/s]'¶
 
- class hydpy.models.dam.dam_control.AllowedWaterLevelDrop(subvars: SubParameters)[source]¶
- Bases: - Parameter- The highest allowed water level decrease [m/T]. - Required by the methods:
 
- class hydpy.models.dam.dam_control.AllowedDischargeTolerance(subvars: SubParameters)[source]¶
- Bases: - Parameter- Smoothing parameter eventually associated with - AllowedWaterLevelDrop[m³/s].
- class hydpy.models.dam.dam_control.AllowedRelease(subvars)[source]¶
- Bases: - SeasonalParameter- The maximum water release not causing any harm downstream [m³/s]. - Required by the methods:
 
- class hydpy.models.dam.dam_control.TargetVolume(subvars)[source]¶
- Bases: - SeasonalParameter- The desired volume of water required within the dam at specific times of the year [Mio. m³]. - Required by the method:
 
- class hydpy.models.dam.dam_control.TargetRangeAbsolute(subvars: SubParameters)[source]¶
- Bases: - Parameter- The absolute interpolation range related to parameter - TargetVolume[Mio. m³].- Required by the method:
 
- class hydpy.models.dam.dam_control.TargetRangeRelative(subvars: SubParameters)[source]¶
- Bases: - Parameter- The relative interpolation range related to parameter - TargetVolume[-].- Required by the method:
 
- class hydpy.models.dam.dam_control.VolumeTolerance(subvars: SubParameters)[source]¶
- Bases: - Parameter- Smoothing parameter for volume-related smoothing operations [Mio. m³]. 
- class hydpy.models.dam.dam_control.DischargeTolerance(subvars: SubParameters)[source]¶
- Bases: - Parameter- Smoothing parameter for discharge-related smoothing operations [m³/s]. 
- class hydpy.models.dam.dam_control.CrestLevel(subvars: SubParameters)[source]¶
- Bases: - Parameter- The crest level of a weir [m]. - Required by the method:
 
- class hydpy.models.dam.dam_control.CrestLevelTolerance(subvars: SubParameters)[source]¶
- Bases: - Parameter- A tolerance value for the crest level of a weir [m]. 
Derived parameters¶
- class hydpy.models.dam.DerivedParameters(master: Parameters, cls_fastaccess: type[FastAccessParameter] | None = None, cymodel: CyModelProtocol | None = None)
- Bases: - SubParameters- Derived parameters of model dam. - The following classes are selected:
- TOY()References the- timeofyearindex array provided by the instance of class- Indexeravailable in module- pub[-].
- Seconds()Length of the actual simulation step size [s].
- InputFactor()Factor for converting meteorological input from mm/T to million m³/s.
- RemoteDischargeSmoothPar()Smoothing parameter to be derived from- RemoteDischargeSafety[m³/s].
- NearDischargeMinimumSmoothPar1()Smoothing parameter to be derived from- NearDischargeMinimumThresholdfor smoothing kernel- smooth_logistic1()[m³/s].
- NearDischargeMinimumSmoothPar2()Smoothing parameter to be derived from- NearDischargeMinimumThresholdfor smoothing kernel- smooth_logistic2()[m³/s].
- WaterLevelMinimumSmoothPar()Smoothing parameter to be derived from- WaterLevelMinimumTolerancefor smoothing kernel- smooth_logistic1()[m].
- WaterLevelMaximumSmoothPar()Smoothing parameter to be derived from- WaterLevelMaximumTolerancefor smoothing kernel- smooth_logistic1()[m].
- RemoteWaterLevelMaximumSmoothPar()Smoothing parameter to be derived from- RemoteWaterLevelMaximumTolerancefor smoothing kernel- smooth_logistic1()[m].
- SmoothParEvaporation()Smoothing parameter to be derived from- ToleranceEvaporationfor smoothing kernel- smooth_logistic1()[m].
- WaterLevelMinimumRemoteSmoothPar()Smoothing parameter to be derived from- WaterLevelMinimumRemoteTolerance[m].
- WaterLevelReliefSmoothPar()Smoothing parameter to be derived from- WaterLevelReliefTolerancefor smoothing kernel- smooth_logistic1()[m³/s].
- WaterLevelSupplySmoothPar()Smoothing parameter to be derived from- WaterLevelSupplyTolerancefor smoothing kernel- smooth_logistic1()[m³/s].
- HighestRemoteSmoothPar()Smoothing parameter to be derived from- HighestRemoteTolerancefor smoothing kernel- smooth_min1()[m³/s].
- VolumeSmoothParLog1()Smoothing parameter to be derived from- VolumeTolerancefor smoothing kernel- smooth_logistic1()[million m³].
- VolumeSmoothParLog2()Smoothing parameter to be derived from- VolumeTolerancefor smoothing kernel- smooth_logistic2()[million m³].
- DischargeSmoothPar()Smoothing parameter to be derived from- DischargeTolerancefor smoothing kernels- smooth_logistic2(),- smooth_min1(), and- smooth_max1()[m³/s].
- CrestLevelSmoothPar()Smoothing parameter to be derived from- CrestLevelTolerancefor smoothing kernel- smooth_max1()[m].
 
 
- class hydpy.models.dam.dam_derived.TOY(subvars: SubParameters)[source]¶
- Bases: - TOYParameter- References the - timeofyearindex array provided by the instance of class- Indexeravailable in module- pub[-].- Required by the methods:
- Calc_ActualRelease_V2- Calc_ActualRelease_V3- Calc_AllowedDischarge_V2- Calc_AllowedRemoteRelief_V2- Calc_FloodDischarge_V1- Calc_MaxForcedDischarge_V1- Calc_MaxFreeDischarge_V1- Calc_RemoteDemand_V1- Calc_RemoteFailure_V1- Calc_RequiredRelease_V1- Calc_RequiredRelease_V2- Calc_RequiredRemoteRelease_V1- Calc_RequiredRemoteSupply_V1- Calc_TargetedRelease_V1
 
- class hydpy.models.dam.dam_derived.Seconds(subvars: SubParameters)[source]¶
- Bases: - SecondsParameter- Length of the actual simulation step size [s]. 
- class hydpy.models.dam.dam_derived.InputFactor(subvars: SubParameters)[source]¶
- Bases: - Parameter- Factor for converting meteorological input from mm/T to million m³/s. - Required by the methods:
 - update()[source]¶
- Update - InputFactorbased on the control parameter- SurfaceAreaand the derived parameter- Seconds:- >>> from hydpy.models.dam import * >>> parameterstep() >>> surfacearea(36.0) >>> derived.seconds(3600.0) >>> derived.inputfactor.update() >>> derived.inputfactor inputfactor(10.0) 
 
- class hydpy.models.dam.dam_derived.RemoteDischargeSmoothPar(subvars: SubParameters)[source]¶
- Bases: - Parameter- Smoothing parameter to be derived from - RemoteDischargeSafety[m³/s].- Required by the method:
 - update()[source]¶
- Calculate the smoothing parameter values. - The documentation on module - smoothtoolsexplains the following example in some detail:- >>> from hydpy import pub >>> pub.timegrids = "2000.01.01", "2000.01.03", "1d" >>> from hydpy.models.dam import * >>> parameterstep() >>> remotedischargesafety(0.0) >>> remotedischargesafety.values[1] = 2.5 >>> derived.remotedischargesmoothpar.update() >>> from hydpy.cythons.smoothutils import smooth_logistic1 >>> from hydpy import round_ >>> round_(smooth_logistic1(0.1, derived.remotedischargesmoothpar[0])) 1.0 >>> round_(smooth_logistic1(2.5, derived.remotedischargesmoothpar[1])) 0.99 
 
- class hydpy.models.dam.dam_derived.NearDischargeMinimumSmoothPar1(subvars: SubParameters)[source]¶
- Bases: - Parameter- Smoothing parameter to be derived from - NearDischargeMinimumThresholdfor smoothing kernel- smooth_logistic1()[m³/s].- Required by the method:
 - update()[source]¶
- Calculate the smoothing parameter values. - The documentation on module - smoothtoolsexplains the following example in some detail:- >>> from hydpy import pub >>> pub.timegrids = "2000.01.01", "2000.01.03", "1d" >>> from hydpy.models.dam import * >>> parameterstep() >>> neardischargeminimumtolerance(0.0) >>> neardischargeminimumtolerance.values[1] = 2.5 >>> derived.neardischargeminimumsmoothpar1.update() >>> from hydpy.cythons.smoothutils import smooth_logistic1 >>> from hydpy import round_ >>> round_(smooth_logistic1(1.0, derived.neardischargeminimumsmoothpar1[0])) 1.0 >>> round_(smooth_logistic1(2.5, derived.neardischargeminimumsmoothpar1[1])) 0.99 
 
- class hydpy.models.dam.dam_derived.NearDischargeMinimumSmoothPar2(subvars: SubParameters)[source]¶
- Bases: - Parameter- Smoothing parameter to be derived from - NearDischargeMinimumThresholdfor smoothing kernel- smooth_logistic2()[m³/s].- Required by the method:
 - update()[source]¶
- Calculate the smoothing parameter values. - The documentation on module - smoothtoolsexplains the following example in some detail:- >>> from hydpy import pub >>> pub.timegrids = "2000.01.01", "2000.01.03", "1d" >>> from hydpy.models.dam import * >>> parameterstep() >>> neardischargeminimumtolerance(0.0) >>> neardischargeminimumtolerance.values[1] = 2.5 >>> derived.neardischargeminimumsmoothpar2.update() >>> from hydpy.cythons.smoothutils import smooth_logistic2 >>> from hydpy import round_ >>> round_(smooth_logistic2(0.0, derived.neardischargeminimumsmoothpar2[0])) 0.0 >>> round_(smooth_logistic2(2.5, derived.neardischargeminimumsmoothpar2[1])) 2.51 
 
- class hydpy.models.dam.dam_derived.WaterLevelMinimumSmoothPar(subvars: SubParameters)[source]¶
- Bases: - Parameter- Smoothing parameter to be derived from - WaterLevelMinimumTolerancefor smoothing kernel- smooth_logistic1()[m].- Required by the methods:
 - update()[source]¶
- Calculate the smoothing parameter value. - The documentation on module - smoothtoolsexplains the following example in some detail:- >>> from hydpy.models.dam import * >>> parameterstep() >>> waterlevelminimumtolerance(0.0) >>> derived.waterlevelminimumsmoothpar.update() >>> from hydpy.cythons.smoothutils import smooth_logistic1 >>> from hydpy import round_ >>> round_(smooth_logistic1(0.1, derived.waterlevelminimumsmoothpar)) 1.0 >>> waterlevelminimumtolerance(2.5) >>> derived.waterlevelminimumsmoothpar.update() >>> round_(smooth_logistic1(2.5, derived.waterlevelminimumsmoothpar)) 0.99 
 
- class hydpy.models.dam.dam_derived.WaterLevelMaximumSmoothPar(subvars: SubParameters)[source]¶
- Bases: - Parameter- Smoothing parameter to be derived from - WaterLevelMaximumTolerancefor smoothing kernel- smooth_logistic1()[m].- Required by the method:
 - update()[source]¶
- Calculate the smoothing parameter value. - The documentation on module - smoothtoolsexplains the following example in some detail:- >>> from hydpy.models.dam import * >>> parameterstep() >>> waterlevelmaximumtolerance(0.0) >>> derived.waterlevelmaximumsmoothpar.update() >>> from hydpy.cythons.smoothutils import smooth_logistic1 >>> from hydpy import round_ >>> round_(smooth_logistic1(0.1, derived.waterlevelmaximumsmoothpar)) 1.0 >>> waterlevelmaximumtolerance(2.5) >>> derived.waterlevelmaximumsmoothpar.update() >>> round_(smooth_logistic1(2.5, derived.waterlevelmaximumsmoothpar)) 0.99 
 
- class hydpy.models.dam.dam_derived.RemoteWaterLevelMaximumSmoothPar(subvars: SubParameters)[source]¶
- Bases: - Parameter- Smoothing parameter to be derived from - RemoteWaterLevelMaximumTolerancefor smoothing kernel- smooth_logistic1()[m].- Required by the methods:
 - update()[source]¶
- Calculate the smoothing parameter value. - The documentation on module - smoothtoolsexplains the following example in some detail:- >>> from hydpy.models.dam import * >>> parameterstep() >>> remotewaterlevelmaximumtolerance(0.0) >>> derived.remotewaterlevelmaximumsmoothpar.update() >>> from hydpy.cythons.smoothutils import smooth_logistic1 >>> from hydpy import round_ >>> round_(smooth_logistic1(0.1, derived.remotewaterlevelmaximumsmoothpar)) 1.0 >>> remotewaterlevelmaximumtolerance(2.5) >>> derived.remotewaterlevelmaximumsmoothpar.update() >>> round_(smooth_logistic1(2.5, derived.remotewaterlevelmaximumsmoothpar)) 0.99 
 
- class hydpy.models.dam.dam_derived.SmoothParEvaporation(subvars: SubParameters)[source]¶
- Bases: - Parameter- Smoothing parameter to be derived from - ToleranceEvaporationfor smoothing kernel- smooth_logistic1()[m].- Required by the method:
 - update()[source]¶
- Calculate the smoothing parameter value. - The documentation on module - smoothtoolsexplains the following example in some detail:- >>> from hydpy.models.dam import * >>> parameterstep() >>> toleranceevaporation(0.0) >>> derived.smoothparevaporation.update() >>> from hydpy.cythons.smoothutils import smooth_logistic1 >>> from hydpy import round_ >>> round_(smooth_logistic1(0.1, derived.smoothparevaporation)) 1.0 >>> toleranceevaporation(2.5) >>> derived.smoothparevaporation.update() >>> round_(smooth_logistic1(2.5, derived.smoothparevaporation)) 0.99 
 
- class hydpy.models.dam.dam_derived.WaterLevelMinimumRemoteSmoothPar(subvars: SubParameters)[source]¶
- Bases: - Parameter- Smoothing parameter to be derived from - WaterLevelMinimumRemoteTolerance[m].- Required by the method:
 - update()[source]¶
- Calculate the smoothing parameter value. - The documentation on module - smoothtoolsexplains the following example in some detail:- >>> from hydpy.models.dam import * >>> parameterstep() >>> waterlevelminimumremotetolerance(0.0) >>> derived.waterlevelminimumremotesmoothpar.update() >>> from hydpy.cythons.smoothutils import smooth_logistic1 >>> from hydpy import round_ >>> round_(smooth_logistic1(0.1, ... derived.waterlevelminimumremotesmoothpar)) 1.0 >>> waterlevelminimumremotetolerance(2.5) >>> derived.waterlevelminimumremotesmoothpar.update() >>> round_(smooth_logistic1(2.5, derived.waterlevelminimumremotesmoothpar)) 0.99 
 
- class hydpy.models.dam.dam_derived.WaterLevelReliefSmoothPar(subvars: SubParameters)[source]¶
- Bases: - Parameter- Smoothing parameter to be derived from - WaterLevelReliefTolerancefor smoothing kernel- smooth_logistic1()[m³/s].- Required by the method:
 - update()[source]¶
- Calculate the smoothing parameter values. - The documentation on module - smoothtoolsexplains the following example in some detail:- >>> from hydpy import pub >>> pub.timegrids = "2000.01.01", "2000.01.03", "1d" >>> from hydpy.models.dam import * >>> parameterstep() >>> waterlevelrelieftolerance(0.0) >>> waterlevelrelieftolerance.values[1] = 2.5 >>> derived.waterlevelreliefsmoothpar.update() >>> from hydpy.cythons.smoothutils import smooth_logistic1 >>> from hydpy import round_ >>> round_(smooth_logistic1(1.0, derived.waterlevelreliefsmoothpar[0])) 1.0 >>> round_(smooth_logistic1(2.5, derived.waterlevelreliefsmoothpar[1])) 0.99 
 
- class hydpy.models.dam.dam_derived.WaterLevelSupplySmoothPar(subvars: SubParameters)[source]¶
- Bases: - Parameter- Smoothing parameter to be derived from - WaterLevelSupplyTolerancefor smoothing kernel- smooth_logistic1()[m³/s].- Required by the method:
 - update()[source]¶
- Calculate the smoothing parameter values. - The documentation on module - smoothtoolsexplains the following example in some detail:- >>> from hydpy import pub >>> pub.timegrids = "2000.01.01", "2000.01.03", "1d" >>> from hydpy.models.dam import * >>> parameterstep() >>> waterlevelsupplytolerance(0.0) >>> waterlevelsupplytolerance.values[1] = 2.5 >>> derived.waterlevelsupplysmoothpar.update() >>> from hydpy.cythons.smoothutils import smooth_logistic1 >>> from hydpy import round_ >>> round_(smooth_logistic1(1.0, derived.waterlevelsupplysmoothpar[0])) 1.0 >>> round_(smooth_logistic1(2.5, derived.waterlevelsupplysmoothpar[1])) 0.99 
 
- class hydpy.models.dam.dam_derived.HighestRemoteSmoothPar(subvars: SubParameters)[source]¶
- Bases: - Parameter- Smoothing parameter to be derived from - HighestRemoteTolerancefor smoothing kernel- smooth_min1()[m³/s].- Required by the methods:
 - update()[source]¶
- Calculate the smoothing parameter value. - The documentation on module - smoothtoolsexplains the following example in some detail:- >>> from hydpy.models.dam import * >>> parameterstep() >>> highestremotedischarge(1.0) >>> highestremotetolerance(0.0) >>> derived.highestremotesmoothpar.update() >>> from hydpy.cythons.smoothutils import smooth_min1 >>> from hydpy import round_ >>> round_(smooth_min1(-4.0, 1.5, derived.highestremotesmoothpar)) -4.0 >>> highestremotetolerance(2.5) >>> derived.highestremotesmoothpar.update() >>> round_(smooth_min1(-4.0, -1.5, derived.highestremotesmoothpar)) -4.01 - Note that the example above corresponds to the one on function - calc_smoothpar_min1()due to the value of parameter- HighestRemoteDischargebeing 1 m³/s. Doubling- HighestRemoteDischargealso doubles- HighestRemoteSmoothPar, leading to the following result:- >>> highestremotedischarge(2.0) >>> derived.highestremotesmoothpar.update() >>> round_(smooth_min1(-4.0, 1.0, derived.highestremotesmoothpar)) -4.02 - This relationship between - HighestRemoteDischargeand- HighestRemoteSmoothParprevents any smoothing when the value of- HighestRemoteDischargeis zero:- >>> highestremotedischarge(0.0) >>> derived.highestremotesmoothpar.update() >>> round_(smooth_min1(1.0, 1.0, derived.highestremotesmoothpar)) 1.0 - In addition, method - update()sets the value of parameter- HighestRemoteSmoothParto zero if- HighestRemoteDischargeis- inf(no actual value will ever reach vicinity of infinity, hence smoothing would never apply anyway):- >>> highestremotedischarge(inf) >>> derived.highestremotesmoothpar.update() >>> round_(smooth_min1(1.0, 1.0, derived.highestremotesmoothpar)) 1.0 
 
- class hydpy.models.dam.dam_derived.VolumeSmoothParLog1(subvars: SubParameters)[source]¶
- Bases: - Parameter- Smoothing parameter to be derived from - VolumeTolerancefor smoothing kernel- smooth_logistic1()[million m³].- Required by the method:
 - update()[source]¶
- Calculate the smoothing parameter value. - The documentation on module - smoothtoolsexplains the following example in some detail:- >>> from hydpy.models.dam import * >>> parameterstep() >>> volumetolerance(0.0) >>> derived.volumesmoothparlog1.update() >>> from hydpy.cythons.smoothutils import smooth_logistic1 >>> from hydpy import round_ >>> round_(smooth_logistic1(0.1, derived.volumesmoothparlog1)) 1.0 >>> volumetolerance(2.5) >>> derived.volumesmoothparlog1.update() >>> round_(smooth_logistic1(2.5, derived.volumesmoothparlog1)) 0.99 
 
- class hydpy.models.dam.dam_derived.VolumeSmoothParLog2(subvars: SubParameters)[source]¶
- Bases: - Parameter- Smoothing parameter to be derived from - VolumeTolerancefor smoothing kernel- smooth_logistic2()[million m³].- Required by the method:
 - update()[source]¶
- Calculate the smoothing parameter value. - The documentation on module - smoothtoolsexplains the following example in some detail:- >>> from hydpy.models.dam import * >>> parameterstep() >>> from hydpy.cythons.smoothutils import smooth_logistic2 >>> from hydpy import round_ >>> volumetolerance(0.0) >>> derived.volumesmoothparlog2.update() >>> round_(smooth_logistic2(0.0, derived.volumesmoothparlog2)) 0.0 >>> volumetolerance(2.5) >>> derived.volumesmoothparlog2.update() >>> round_(smooth_logistic2(2.5, derived.volumesmoothparlog2)) 2.51 
 
- class hydpy.models.dam.dam_derived.DischargeSmoothPar(subvars: SubParameters)[source]¶
- Bases: - Parameter- Smoothing parameter to be derived from - DischargeTolerancefor smoothing kernels- smooth_logistic2(),- smooth_min1(), and- smooth_max1()[m³/s].- Required by the methods:
- Calc_ActualRelease_V3- Calc_AllowedDischarge_V2- Calc_FreeDischarge_V1- Calc_Outflow_V2
 - update()[source]¶
- Calculate the smoothing parameter value. - The documentation on module - smoothtoolsexplains the following example in some detail:- >>> from hydpy.models.dam import * >>> parameterstep() >>> dischargetolerance(0.0) >>> derived.dischargesmoothpar.update() >>> from hydpy.cythons.smoothutils import smooth_max1, smooth_min1 >>> from hydpy import round_ >>> round_(smooth_max1(4.0, 1.5, derived.dischargesmoothpar)) 4.0 >>> round_(smooth_min1(4.0, 1.5, derived.dischargesmoothpar)) 1.5 >>> dischargetolerance(2.5) >>> derived.dischargesmoothpar.update() >>> round_(smooth_max1(4.0, 1.5, derived.dischargesmoothpar)) 4.01 >>> round_(smooth_min1(4.0, 1.5, derived.dischargesmoothpar)) 1.49 
 
- class hydpy.models.dam.dam_derived.CrestLevelSmoothPar(subvars: SubParameters)[source]¶
- Bases: - Parameter- Smoothing parameter to be derived from - CrestLevelTolerancefor smoothing kernel- smooth_max1()[m].- Required by the method:
 - update()[source]¶
- Calculate the smoothing parameter value. - The documentation on module - smoothtoolsexplains the following example in some detail:- >>> from hydpy.models.dam import * >>> parameterstep() >>> crestleveltolerance(0.0) >>> derived.crestlevelsmoothpar.update() >>> from hydpy.cythons.smoothutils import smooth_max1, smooth_min1 >>> from hydpy import round_ >>> round_(smooth_max1(4.0, 1.5, derived.crestlevelsmoothpar)) 4.0 >>> round_(smooth_min1(4.0, 1.5, derived.crestlevelsmoothpar)) 1.5 >>> crestleveltolerance(2.5) >>> derived.crestlevelsmoothpar.update() >>> round_(smooth_max1(4.0, 1.5, derived.crestlevelsmoothpar)) 4.01 >>> round_(smooth_min1(4.0, 1.5, derived.crestlevelsmoothpar)) 1.49 
 
Solver parameters¶
- class hydpy.models.dam.SolverParameters(master: Parameters, cls_fastaccess: type[FastAccessParameter] | None = None, cymodel: CyModelProtocol | None = None)
- Bases: - SubParameters- Solver parameters of model dam. - The following classes are selected:
- AbsErrorMax()Absolute numerical error tolerance [m³/s].
- RelErrorMax()Relative numerical error tolerance [1/T].
- RelDTMin()Smallest relative integration time step size allowed [-].
- RelDTMax()Largest relative integration time step size allowed [-].
 
 
- class hydpy.models.dam.dam_solver.AbsErrorMax(subvars)[source]¶
- Bases: - SolverParameter- Absolute numerical error tolerance [m³/s]. - modify_init() float[source]¶
- Adjust and return the value of class constant INIT. - Note that the default initial value 0.0001 refers to mm/T. Hence the actual default initial value in m³/s is: - \(AbsErrorMax = 0.0001 \cdot CatchmentArea \cdot 1000 / Seconds\) - >>> from hydpy.models.dam import * >>> simulationstep("1h") >>> parameterstep("1d") >>> solver.abserrormax.INIT 0.0001 >>> catchmentarea(2.0) >>> derived.seconds.update() >>> from hydpy import round_ >>> round_(solver.abserrormax.modify_init()) 0.000056 
 
- class hydpy.models.dam.dam_solver.RelErrorMax(subvars)[source]¶
- Bases: - SolverParameter- Relative numerical error tolerance [1/T]. 
- class hydpy.models.dam.dam_solver.RelDTMin(subvars)[source]¶
- Bases: - SolverParameter- Smallest relative integration time step size allowed [-]. 
- class hydpy.models.dam.dam_solver.RelDTMax(subvars)[source]¶
- Bases: - SolverParameter- Largest relative integration time step size allowed [-]. 
Sequence Features¶
Factor sequences¶
- class hydpy.models.dam.FactorSequences(master: Sequences, cls_fastaccess: type[TypeFastAccess_co] | None = None, cymodel: CyModelProtocol | None = None)
- Bases: - FactorSequences- Factor sequences of model dam. - The following classes are selected:
- WaterLevel()Water level [m].
- OuterWaterLevel()The water level directly below the dam [m].
- RemoteWaterLevel()The water level at a remote location [m].
- WaterLevelDifference()Difference between the inner and the outer water level [m].
- EffectiveWaterLevelDifference()Effective difference between the inner and the outer water level [m].
 
 
- class hydpy.models.dam.dam_factors.WaterLevel(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FactorSequence- Water level [m]. - Calculated by the method:
- Required by the methods:
- Calc_ActualEvaporation_V1- Calc_ActualRelease_V1- Calc_ActualRelease_V2- Calc_ActualRemoteRelease_V1- Calc_AllowedRemoteRelief_V2- Calc_EffectiveWaterLevelDifference_V1- Calc_FloodDischarge_V1- Calc_ForcedDischarge_V1- Calc_PossibleRemoteRelief_V1- Calc_RequiredRemoteSupply_V1- Calc_WaterLevelDifference_V1
 - After each simulation step, the value of - WaterLevelcorresponds to the value of the state sequence- WaterVolumefor the end of the simulation step.
- class hydpy.models.dam.dam_factors.OuterWaterLevel(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FactorSequence- The water level directly below the dam [m]. - Calculated by the method:
- Required by the methods:
- Calc_EffectiveWaterLevelDifference_V1- Calc_WaterLevelDifference_V1
 
- class hydpy.models.dam.dam_factors.RemoteWaterLevel(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FactorSequence- The water level at a remote location [m]. - Calculated by the method:
- Required by the methods:
 
- class hydpy.models.dam.dam_factors.WaterLevelDifference(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FactorSequence- Difference between the inner and the outer water level [m]. - Calculated by the method:
- Required by the method:
 - The inner water level is above the outer water level for positive values. 
- class hydpy.models.dam.dam_factors.EffectiveWaterLevelDifference(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FactorSequence- Effective difference between the inner and the outer water level [m]. - Calculated by the method:
- Required by the method:
 - “Effective” could mean, for example, the water level difference above a weir crest (where the actual water exchange takes place). 
Flux sequences¶
- class hydpy.models.dam.FluxSequences(master: Sequences, cls_fastaccess: type[TypeFastAccess_co] | None = None, cymodel: CyModelProtocol | None = None)
- Bases: - FluxSequences- Flux sequences of model dam. - The following classes are selected:
- Precipitation()Precipitation [mm].
- AdjustedPrecipitation()Adjusted precipitation [m³/s].
- PotentialEvaporation()Potential evaporation [mm/T].
- AdjustedEvaporation()Adjusted evaporation [m³/s].
- ActualEvaporation()Actual evaporation [m³/s].
- Inflow()Total inflow [m³/s].
- Exchange()Water exchange with another location [m³/s].
- TotalRemoteDischarge()Total discharge at a cross-section far downstream [m³/s].
- NaturalRemoteDischarge()Natural discharge at a cross-section far downstream [m³/s].
- RemoteDemand()Discharge demand at a cross-section far downstream [m³/s].
- RemoteFailure()Difference between the actual and the required discharge at a cross-section far downstream [m³/s].
- RequiredRemoteRelease()Water release considered appropriate to reduce drought events at cross-sections far downstream [m³/s].
- AllowedRemoteRelief()Allowed discharge to relieve a dam during high flow conditions [m³/s].
- RequiredRemoteSupply()Required water supply, for example, to fill a dam during low water conditions [m³/s].
- PossibleRemoteRelief()Maximum possible water release to a remote location to relieve the dam during high flow conditions [m³/s].
- ActualRemoteRelief()Actual water release to a remote location to relieve the dam during high flow conditions [m³/s].
- RequiredRelease()Required water release for reducing drought events downstream [m³/s].
- TargetedRelease()The targeted water release for reducing drought events downstream after taking both the required release and additional low flow regulations into account [m³/s].
- ActualRelease()Actual water release thought for reducing drought events downstream [m³/s].
- MissingRemoteRelease()Amount of the required remote demand not met by the actual release [m³/s].
- ActualRemoteRelease()Actual water release thought for arbitrary “remote” purposes [m³/s].
- FloodDischarge()Water release associated with flood events [m³/s].
- FreeDischarge()Free water release through structures as flap sluice gates [m³/s].
- MaxForcedDischarge()The currently highest possible forced water release through structures as pumps [m³/s].
- MaxFreeDischarge()The currently highest possible free water release through structures as pumps [m³/s].
- ForcedDischarge()Forced water release through structures as pumps [m³/s].
- Outflow()Total outflow [m³/s].
 
 
- class hydpy.models.dam.dam_fluxes.Precipitation(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- Precipitation [mm]. - Calculated by the method:
- Required by the method:
 
- class hydpy.models.dam.dam_fluxes.AdjustedPrecipitation(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- Adjusted precipitation [m³/s]. - Calculated by the method:
- Required by the methods:
- Calc_AllowedDischarge_V1- Update_WaterVolume_V1- Update_WaterVolume_V2- Update_WaterVolume_V3- Update_WaterVolume_V4
 
- class hydpy.models.dam.dam_fluxes.PotentialEvaporation(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- Potential evaporation [mm/T]. - Calculated by the method:
- Required by the method:
 
- class hydpy.models.dam.dam_fluxes.AdjustedEvaporation(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- Adjusted evaporation [m³/s]. - Calculated by the method:
- Required by the method:
 
- class hydpy.models.dam.dam_fluxes.ActualEvaporation(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- Actual evaporation [m³/s]. - Calculated by the method:
- Required by the methods:
- Calc_AllowedDischarge_V1- Update_WaterVolume_V1- Update_WaterVolume_V2- Update_WaterVolume_V3- Update_WaterVolume_V4
 
- class hydpy.models.dam.dam_fluxes.Inflow(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- Total inflow [m³/s]. - Calculated by the methods:
- Required by the methods:
- Calc_ActualRelease_V3- Calc_AllowedDischarge_V1- Calc_AllowedDischarge_V2- Calc_TargetedRelease_V1- Update_WaterVolume_V1- Update_WaterVolume_V2- Update_WaterVolume_V3- Update_WaterVolume_V4
 
- class hydpy.models.dam.dam_fluxes.Exchange(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- Water exchange with another location [m³/s]. - Required by the methods:
 
- class hydpy.models.dam.dam_fluxes.TotalRemoteDischarge(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- Total discharge at a cross-section far downstream [m³/s]. - Calculated by the method:
- Required by the method:
 
- class hydpy.models.dam.dam_fluxes.NaturalRemoteDischarge(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- Natural discharge at a cross-section far downstream [m³/s]. - Calculated by the method:
- Required by the method:
 - Natural means: without the water released by the dam. 
- class hydpy.models.dam.dam_fluxes.RemoteDemand(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- Discharge demand at a cross-section far downstream [m³/s]. - Calculated by the method:
- Required by the method:
 
- class hydpy.models.dam.dam_fluxes.RemoteFailure(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- Difference between the actual and the required discharge at a cross-section far downstream [m³/s]. - Calculated by the method:
- Required by the method:
 
- class hydpy.models.dam.dam_fluxes.RequiredRemoteRelease(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- Water release considered appropriate to reduce drought events at cross-sections far downstream [m³/s]. - Calculated by the methods:
- Required by the methods:
- Calc_ActualRemoteRelease_V1- Calc_MissingRemoteRelease_V1- Calc_RequiredRelease_V1
 
- class hydpy.models.dam.dam_fluxes.AllowedRemoteRelief(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- Allowed discharge to relieve a dam during high flow conditions [m³/s]. - Calculated by the methods:
- Required by the methods:
 
- class hydpy.models.dam.dam_fluxes.RequiredRemoteSupply(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- Required water supply, for example, to fill a dam during low water conditions [m³/s]. - Calculated by the method:
- Required by the method:
 
- class hydpy.models.dam.dam_fluxes.PossibleRemoteRelief(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- Maximum possible water release to a remote location to relieve the dam during high flow conditions [m³/s]. - Calculated by the method:
- Required by the method:
 
- class hydpy.models.dam.dam_fluxes.ActualRemoteRelief(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- Actual water release to a remote location to relieve the dam during high flow conditions [m³/s]. - Calculated by the method:
- Updated by the method:
- Required by the methods:
- Pass_ActualRemoteRelief_V1- Update_ActualRemoteRelease_V1- Update_WaterVolume_V3
 
- class hydpy.models.dam.dam_fluxes.RequiredRelease(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- Required water release for reducing drought events downstream [m³/s]. - Calculated by the methods:
- Required by the method:
 
- class hydpy.models.dam.dam_fluxes.TargetedRelease(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- The targeted water release for reducing drought events downstream after taking both the required release and additional low flow regulations into account [m³/s]. - Calculated by the method:
- Required by the method:
 
- class hydpy.models.dam.dam_fluxes.ActualRelease(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- Actual water release thought for reducing drought events downstream [m³/s]. - Calculated by the methods:
- Calc_ActualRelease_V1- Calc_ActualRelease_V2- Calc_ActualRelease_V3
- Required by the methods:
 
- class hydpy.models.dam.dam_fluxes.MissingRemoteRelease(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- Amount of the required remote demand not met by the actual release [m³/s]. - Calculated by the method:
- Required by the method:
 
- class hydpy.models.dam.dam_fluxes.ActualRemoteRelease(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- Actual water release thought for arbitrary “remote” purposes [m³/s]. - Calculated by the method:
- Updated by the method:
- Required by the methods:
- Pass_ActualRemoteRelease_V1- Update_WaterVolume_V2- Update_WaterVolume_V3
 
- class hydpy.models.dam.dam_fluxes.FloodDischarge(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- Water release associated with flood events [m³/s]. - Calculated by the method:
- Required by the methods:
 
- class hydpy.models.dam.dam_fluxes.FreeDischarge(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- Free water release through structures as flap sluice gates [m³/s]. - Calculated by the method:
- Required by the methods:
 
- class hydpy.models.dam.dam_fluxes.MaxForcedDischarge(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- The currently highest possible forced water release through structures as pumps [m³/s]. - Calculated by the method:
- Required by the method:
 
- class hydpy.models.dam.dam_fluxes.MaxFreeDischarge(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- The currently highest possible free water release through structures as pumps [m³/s]. - Calculated by the method:
- Required by the method:
 
- class hydpy.models.dam.dam_fluxes.ForcedDischarge(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- Forced water release through structures as pumps [m³/s]. - Calculated by the method:
- Required by the methods:
 
- class hydpy.models.dam.dam_fluxes.Outflow(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - FluxSequence- Total outflow [m³/s]. - Calculated by the methods:
- Calc_Outflow_V1- Calc_Outflow_V2- Calc_Outflow_V3- Calc_Outflow_V4- Calc_Outflow_V5
- Required by the methods:
- Pass_Outflow_V1- Update_LoggedOutflow_V1- Update_WaterVolume_V1- Update_WaterVolume_V2- Update_WaterVolume_V3- Update_WaterVolume_V4
 
State sequences¶
- class hydpy.models.dam.StateSequences(master: Sequences, cls_fastaccess: type[TypeFastAccess_co] | None = None, cymodel: CyModelProtocol | None = None)
- Bases: - StateSequences- State sequences of model dam. - The following classes are selected:
- WaterVolume()Water volume [million m³].
 
 
- class hydpy.models.dam.dam_states.WaterVolume(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - StateSequence- Water volume [million m³]. - Updated by the methods:
- Update_WaterVolume_V1- Update_WaterVolume_V2- Update_WaterVolume_V3- Update_WaterVolume_V4
- Required by the methods:
- Calc_ActualRelease_V3- Calc_SurfaceArea_V1- Calc_WaterLevel_V1
 
Log sequences¶
- class hydpy.models.dam.LogSequences(master: Sequences, cls_fastaccess: type[TypeFastAccess_co] | None = None, cymodel: CyModelProtocol | None = None)
- Bases: - LogSequences- Log sequences of model dam. - The following classes are selected:
- LoggedTotalRemoteDischarge()Logged discharge values from somewhere else [m³/s].
- LoggedOutflow()Logged discharge values from the dam itself [m³/s].
- LoggedAdjustedEvaporation()Logged adjusted evaporation [m³/s].
- LoggedRequiredRemoteRelease()Logged required discharge values computed by another model [m³/s].
- LoggedAllowedRemoteRelief()Logged allowed discharge values computed by another model [m³/s].
- LoggedOuterWaterLevel()Logged water level directly below the dam [m].
- LoggedRemoteWaterLevel()Logged water level at a remote location [m].
 
 
- class hydpy.models.dam.dam_logs.LoggedTotalRemoteDischarge(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - LogSequence- Logged discharge values from somewhere else [m³/s]. - Updated by the method:
- Required by the methods:
 
- class hydpy.models.dam.dam_logs.LoggedOutflow(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - LogSequence- Logged discharge values from the dam itself [m³/s]. - Updated by the method:
- Required by the method:
 
- class hydpy.models.dam.dam_logs.LoggedAdjustedEvaporation(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - LogSequenceFixed- Logged adjusted evaporation [m³/s]. - Updated by the method:
 
- class hydpy.models.dam.dam_logs.LoggedRequiredRemoteRelease(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - LogSequenceFixed- Logged required discharge values computed by another model [m³/s]. - Calculated by the methods:
- Pic_LoggedRequiredRemoteRelease_V1- Pic_LoggedRequiredRemoteRelease_V2
- Required by the method:
 
- class hydpy.models.dam.dam_logs.LoggedAllowedRemoteRelief(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - LogSequenceFixed- Logged allowed discharge values computed by another model [m³/s]. - Calculated by the method:
- Required by the method:
 
- class hydpy.models.dam.dam_logs.LoggedOuterWaterLevel(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - LogSequenceFixed- Logged water level directly below the dam [m]. - Calculated by the method:
- Required by the method:
 
- class hydpy.models.dam.dam_logs.LoggedRemoteWaterLevel(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - LogSequenceFixed- Logged water level at a remote location [m]. - Calculated by the method:
- Required by the method:
 
Inlet sequences¶
- class hydpy.models.dam.InletSequences(master: Sequences, cls_fastaccess: type[TypeFastAccess_co] | None = None, cymodel: CyModelProtocol | None = None)
- Bases: - InletSequences- Inlet sequences of model dam. 
- class hydpy.models.dam.dam_inlets.Q(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - InletSequence- Inflow [m³/s]. - Required by the methods:
 
- class hydpy.models.dam.dam_inlets.S(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - InletSequence- Actual water supply [m³/s]. - Required by the method:
 
- class hydpy.models.dam.dam_inlets.R(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - InletSequence- Actual water relief [m³/s]. - Required by the method:
 
- class hydpy.models.dam.dam_inlets.E(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - InletSequence- Bidirectional water exchange [m³/s]. 
Outlet sequences¶
- class hydpy.models.dam.OutletSequences(master: Sequences, cls_fastaccess: type[TypeFastAccess_co] | None = None, cymodel: CyModelProtocol | None = None)
- Bases: - OutletSequences- Outlet sequences of model dam. 
- class hydpy.models.dam.dam_outlets.Q(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - OutletSequence- Outflow [m³/s]. - Calculated by the method:
 
- class hydpy.models.dam.dam_outlets.S(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - OutletSequence- Actual water supply [m³/s]. - Calculated by the method:
 
- class hydpy.models.dam.dam_outlets.R(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - OutletSequence- Actual water relief [m³/s]. - Calculated by the method:
 
Receiver sequences¶
- class hydpy.models.dam.ReceiverSequences(master: Sequences, cls_fastaccess: type[TypeFastAccess_co] | None = None, cymodel: CyModelProtocol | None = None)
- Bases: - ReceiverSequences- Receiver sequences of model dam. 
- class hydpy.models.dam.dam_receivers.Q(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - ReceiverSequence- Remote discharge [m³/s]. - Required by the method:
 
- class hydpy.models.dam.dam_receivers.D(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - ReceiverSequence- Water demand [m³/s]. - Required by the method:
 
- class hydpy.models.dam.dam_receivers.S(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - ReceiverSequence- Required water supply [m³/s]. - Required by the method:
 
- class hydpy.models.dam.dam_receivers.R(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - ReceiverSequence- Allowed water relief [m³/s]. - Required by the method:
 
- class hydpy.models.dam.dam_receivers.OWL(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - ReceiverSequence- The water level directly below the dam [m]. - Required by the method:
 
- class hydpy.models.dam.dam_receivers.RWL(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - ReceiverSequence- The water level at a remote location [m]. - Required by the method:
 
Sender sequences¶
- class hydpy.models.dam.SenderSequences(master: Sequences, cls_fastaccess: type[TypeFastAccess_co] | None = None, cymodel: CyModelProtocol | None = None)
- Bases: - SenderSequences- Sender sequences of model dam. 
- class hydpy.models.dam.dam_senders.D(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - SenderSequence- Water demand [m³/s]. - Calculated by the method:
 
- class hydpy.models.dam.dam_senders.S(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - SenderSequence- Required water supply [m³/s]. - Calculated by the method:
 
- class hydpy.models.dam.dam_senders.R(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - SenderSequence- Required water relief [m³/s]. - Calculated by the method:
 
Aide sequences¶
- class hydpy.models.dam.AideSequences(master: Sequences, cls_fastaccess: type[TypeFastAccess_co] | None = None, cymodel: CyModelProtocol | None = None)
- Bases: - AideSequences- Aide sequences of model dam. - The following classes are selected:
- SurfaceArea()Surface area [km²].
- AllowedDischarge()Discharge threshold not to be overcut by the actual discharge [m³/s].
 
 
- class hydpy.models.dam.dam_aides.SurfaceArea(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - AideSequence- Surface area [km²]. - Calculated by the method:
- Required by the methods:
 
- class hydpy.models.dam.dam_aides.AllowedDischarge(subvars: ModelSequences[ModelSequence, FastAccess])[source]¶
- Bases: - AideSequence- Discharge threshold not to be overcut by the actual discharge [m³/s]. - Calculated by the methods:
- Required by the methods:
 
- class hydpy.models.dam.AideSequences(master: Sequences, cls_fastaccess: type[TypeFastAccess_co] | None = None, cymodel: CyModelProtocol | None = None)¶
- Bases: - AideSequences- Aide sequences of model dam. - The following classes are selected:
- SurfaceArea()Surface area [km²].
- AllowedDischarge()Discharge threshold not to be overcut by the actual discharge [m³/s].
 
 
- class hydpy.models.dam.ControlParameters(master: Parameters, cls_fastaccess: type[FastAccessParameter] | None = None, cymodel: CyModelProtocol | None = None)¶
- Bases: - SubParameters- Control parameters of model dam. - The following classes are selected:
- SurfaceArea()Average size of the water surface [km²].
- CatchmentArea()Size of the catchment draining into the dam [km²].
- NmbLogEntries()Number of log entries for certain variables [-].
- CorrectionPrecipitation()Precipitation correction factor [-].
- CorrectionEvaporation()Evaporation correction factor [-].
- WeightEvaporation()Time weighting factor for evaporation [-].
- RemoteDischargeMinimum()Discharge threshold of a cross-section far downstream not to be undercut by the actual discharge [m³/s].
- RemoteDischargeSafety()Safety factor for reducing the risk of insufficient water release [m³/s].
- WaterLevel2PossibleRemoteRelief()An interpolation function describing the relationship between water level and the highest possible water release used to relieve the dam during high flow conditions [-].
- RemoteReliefTolerance()A tolerance value for- PossibleRemoteRelief[m³/s].
- NearDischargeMinimumThreshold()Discharge threshold of a cross-section near the dam not to be undercut by the actual discharge [m³/s].
- NearDischargeMinimumTolerance()A tolerance value for the “near discharge minimum” [m³/s].
- RestrictTargetedRelease()A flag indicating whether low flow variability has to be preserved or not [-].
- WaterVolumeMinimumThreshold()The minimum operating water volume of the dam [million m³].
- WaterLevelMinimumThreshold()The minimum operating water level of the dam [m].
- WaterLevelMinimumTolerance()A tolerance value for the minimum operating water level [m].
- WaterLevelMaximumThreshold()The water level not to be exceeded [m].
- WaterLevelMaximumTolerance()A tolerance value for the water level maximum [m].
- RemoteWaterLevelMaximumThreshold()The remote water level not to be exceeded [m].
- RemoteWaterLevelMaximumTolerance()Tolerance value for the remote water level maximum [m].
- ThresholdEvaporation()The water level at which actual evaporation is 50 % of potential evaporation [m].
- ToleranceEvaporation()A tolerance value defining the steepness of the transition of actual evaporation between zero and potential evaporation [m].
- WaterLevelMinimumRemoteThreshold()The minimum operating water level of the dam regarding remote water supply [m].
- WaterLevelMinimumRemoteTolerance()A tolerance value for the minimum operating water level regarding remote water supply [m].
- HighestRemoteRelief()The highest possible relief discharge from another location [m³/s].
- WaterLevelReliefThreshold()The threshold water level of the dam regarding the allowed relief discharge from another location [m].
- WaterLevelReliefTolerance()A tolerance value for parameter- WaterLevelReliefThreshold[m].
- HighestRemoteSupply()The highest possible supply discharge from another location [m³/s].
- WaterLevelSupplyThreshold()The threshold water level of the dam regarding the required supply discharge from another location [m].
- WaterLevelSupplyTolerance()A tolerance value for parameter- WaterLevelSupplyThreshold[m].
- HighestRemoteDischarge()The highest possible discharge between two remote locations [m³/s].
- HighestRemoteTolerance()Smoothing parameter associated with- HighestRemoteDischarge[m³/s].
- WaterVolume2WaterLevel()An interpolation function that describes the relationship between water level and water volume [-].
- WaterLevel2FloodDischarge()An interpolation function that describesg the relationship between flood discharge and water volume [-].
- WaterLevelDifference2MaxForcedDischarge()An interpolation function that describes the relationship between the highest possible forced discharge and the water level difference [-].
- WaterLevelDifference2MaxFreeDischarge()An interpolation function that describes the relationship between the highest possible free discharge and the water level difference [-].
- AllowedWaterLevelDrop()The highest allowed water level decrease [m/T].
- AllowedRelease()The maximum water release not causing any harm downstream [m³/s].
- TargetVolume()The desired volume of water required within the dam at specific times of the year [Mio. m³].
- TargetRangeAbsolute()The absolute interpolation range related to parameter- TargetVolume[Mio. m³].
- TargetRangeRelative()The relative interpolation range related to parameter- TargetVolume[-].
- VolumeTolerance()Smoothing parameter for volume-related smoothing operations [Mio. m³].
- DischargeTolerance()Smoothing parameter for discharge-related smoothing operations [m³/s].
- CrestLevel()The crest level of a weir [m].
- CrestLevelTolerance()A tolerance value for the crest level of a weir [m].
 
 
- class hydpy.models.dam.DerivedParameters(master: Parameters, cls_fastaccess: type[FastAccessParameter] | None = None, cymodel: CyModelProtocol | None = None)¶
- Bases: - SubParameters- Derived parameters of model dam. - The following classes are selected:
- TOY()References the- timeofyearindex array provided by the instance of class- Indexeravailable in module- pub[-].
- Seconds()Length of the actual simulation step size [s].
- InputFactor()Factor for converting meteorological input from mm/T to million m³/s.
- RemoteDischargeSmoothPar()Smoothing parameter to be derived from- RemoteDischargeSafety[m³/s].
- NearDischargeMinimumSmoothPar1()Smoothing parameter to be derived from- NearDischargeMinimumThresholdfor smoothing kernel- smooth_logistic1()[m³/s].
- NearDischargeMinimumSmoothPar2()Smoothing parameter to be derived from- NearDischargeMinimumThresholdfor smoothing kernel- smooth_logistic2()[m³/s].
- WaterLevelMinimumSmoothPar()Smoothing parameter to be derived from- WaterLevelMinimumTolerancefor smoothing kernel- smooth_logistic1()[m].
- WaterLevelMaximumSmoothPar()Smoothing parameter to be derived from- WaterLevelMaximumTolerancefor smoothing kernel- smooth_logistic1()[m].
- RemoteWaterLevelMaximumSmoothPar()Smoothing parameter to be derived from- RemoteWaterLevelMaximumTolerancefor smoothing kernel- smooth_logistic1()[m].
- SmoothParEvaporation()Smoothing parameter to be derived from- ToleranceEvaporationfor smoothing kernel- smooth_logistic1()[m].
- WaterLevelMinimumRemoteSmoothPar()Smoothing parameter to be derived from- WaterLevelMinimumRemoteTolerance[m].
- WaterLevelReliefSmoothPar()Smoothing parameter to be derived from- WaterLevelReliefTolerancefor smoothing kernel- smooth_logistic1()[m³/s].
- WaterLevelSupplySmoothPar()Smoothing parameter to be derived from- WaterLevelSupplyTolerancefor smoothing kernel- smooth_logistic1()[m³/s].
- HighestRemoteSmoothPar()Smoothing parameter to be derived from- HighestRemoteTolerancefor smoothing kernel- smooth_min1()[m³/s].
- VolumeSmoothParLog1()Smoothing parameter to be derived from- VolumeTolerancefor smoothing kernel- smooth_logistic1()[million m³].
- VolumeSmoothParLog2()Smoothing parameter to be derived from- VolumeTolerancefor smoothing kernel- smooth_logistic2()[million m³].
- DischargeSmoothPar()Smoothing parameter to be derived from- DischargeTolerancefor smoothing kernels- smooth_logistic2(),- smooth_min1(), and- smooth_max1()[m³/s].
- CrestLevelSmoothPar()Smoothing parameter to be derived from- CrestLevelTolerancefor smoothing kernel- smooth_max1()[m].
 
 
- class hydpy.models.dam.FactorSequences(master: Sequences, cls_fastaccess: type[TypeFastAccess_co] | None = None, cymodel: CyModelProtocol | None = None)¶
- Bases: - FactorSequences- Factor sequences of model dam. - The following classes are selected:
- WaterLevel()Water level [m].
- OuterWaterLevel()The water level directly below the dam [m].
- RemoteWaterLevel()The water level at a remote location [m].
- WaterLevelDifference()Difference between the inner and the outer water level [m].
- EffectiveWaterLevelDifference()Effective difference between the inner and the outer water level [m].
 
 
- class hydpy.models.dam.FluxSequences(master: Sequences, cls_fastaccess: type[TypeFastAccess_co] | None = None, cymodel: CyModelProtocol | None = None)¶
- Bases: - FluxSequences- Flux sequences of model dam. - The following classes are selected:
- Precipitation()Precipitation [mm].
- AdjustedPrecipitation()Adjusted precipitation [m³/s].
- PotentialEvaporation()Potential evaporation [mm/T].
- AdjustedEvaporation()Adjusted evaporation [m³/s].
- ActualEvaporation()Actual evaporation [m³/s].
- Inflow()Total inflow [m³/s].
- Exchange()Water exchange with another location [m³/s].
- TotalRemoteDischarge()Total discharge at a cross-section far downstream [m³/s].
- NaturalRemoteDischarge()Natural discharge at a cross-section far downstream [m³/s].
- RemoteDemand()Discharge demand at a cross-section far downstream [m³/s].
- RemoteFailure()Difference between the actual and the required discharge at a cross-section far downstream [m³/s].
- RequiredRemoteRelease()Water release considered appropriate to reduce drought events at cross-sections far downstream [m³/s].
- AllowedRemoteRelief()Allowed discharge to relieve a dam during high flow conditions [m³/s].
- RequiredRemoteSupply()Required water supply, for example, to fill a dam during low water conditions [m³/s].
- PossibleRemoteRelief()Maximum possible water release to a remote location to relieve the dam during high flow conditions [m³/s].
- ActualRemoteRelief()Actual water release to a remote location to relieve the dam during high flow conditions [m³/s].
- RequiredRelease()Required water release for reducing drought events downstream [m³/s].
- TargetedRelease()The targeted water release for reducing drought events downstream after taking both the required release and additional low flow regulations into account [m³/s].
- ActualRelease()Actual water release thought for reducing drought events downstream [m³/s].
- MissingRemoteRelease()Amount of the required remote demand not met by the actual release [m³/s].
- ActualRemoteRelease()Actual water release thought for arbitrary “remote” purposes [m³/s].
- FloodDischarge()Water release associated with flood events [m³/s].
- FreeDischarge()Free water release through structures as flap sluice gates [m³/s].
- MaxForcedDischarge()The currently highest possible forced water release through structures as pumps [m³/s].
- MaxFreeDischarge()The currently highest possible free water release through structures as pumps [m³/s].
- ForcedDischarge()Forced water release through structures as pumps [m³/s].
- Outflow()Total outflow [m³/s].
 
 
- class hydpy.models.dam.InletSequences(master: Sequences, cls_fastaccess: type[TypeFastAccess_co] | None = None, cymodel: CyModelProtocol | None = None)¶
- Bases: - InletSequences- Inlet sequences of model dam. 
- class hydpy.models.dam.LogSequences(master: Sequences, cls_fastaccess: type[TypeFastAccess_co] | None = None, cymodel: CyModelProtocol | None = None)¶
- Bases: - LogSequences- Log sequences of model dam. - The following classes are selected:
- LoggedTotalRemoteDischarge()Logged discharge values from somewhere else [m³/s].
- LoggedOutflow()Logged discharge values from the dam itself [m³/s].
- LoggedAdjustedEvaporation()Logged adjusted evaporation [m³/s].
- LoggedRequiredRemoteRelease()Logged required discharge values computed by another model [m³/s].
- LoggedAllowedRemoteRelief()Logged allowed discharge values computed by another model [m³/s].
- LoggedOuterWaterLevel()Logged water level directly below the dam [m].
- LoggedRemoteWaterLevel()Logged water level at a remote location [m].
 
 
- class hydpy.models.dam.OutletSequences(master: Sequences, cls_fastaccess: type[TypeFastAccess_co] | None = None, cymodel: CyModelProtocol | None = None)¶
- Bases: - OutletSequences- Outlet sequences of model dam. 
- class hydpy.models.dam.ReceiverSequences(master: Sequences, cls_fastaccess: type[TypeFastAccess_co] | None = None, cymodel: CyModelProtocol | None = None)¶
- Bases: - ReceiverSequences- Receiver sequences of model dam. 
- class hydpy.models.dam.SenderSequences(master: Sequences, cls_fastaccess: type[TypeFastAccess_co] | None = None, cymodel: CyModelProtocol | None = None)¶
- Bases: - SenderSequences- Sender sequences of model dam. 
- class hydpy.models.dam.SolverParameters(master: Parameters, cls_fastaccess: type[FastAccessParameter] | None = None, cymodel: CyModelProtocol | None = None)¶
- Bases: - SubParameters- Solver parameters of model dam. - The following classes are selected:
- AbsErrorMax()Absolute numerical error tolerance [m³/s].
- RelErrorMax()Relative numerical error tolerance [1/T].
- RelDTMin()Smallest relative integration time step size allowed [-].
- RelDTMax()Largest relative integration time step size allowed [-].
 
 
- class hydpy.models.dam.StateSequences(master: Sequences, cls_fastaccess: type[TypeFastAccess_co] | None = None, cymodel: CyModelProtocol | None = None)¶
- Bases: - StateSequences- State sequences of model dam. - The following classes are selected:
- WaterVolume()Water volume [million m³].
 
 
