modeltools¶
This module provides features for applying and implementing hydrological models.
Module modeltools
implements the following members:
TypeModel_co
Type variable.
TypeModel_contra
Type variable.
TypeSubmodelInterface
Type variable.
Method
Base class for defining (hydrological) calculation methods.
AutoMethod
Base class for defining methods that only call their submethods in the specified order without passing any arguments or other customisations.
SetAutoMethod
Base class for defining setter methods that also use the given data to calculate other properties.
ReusableMethod
Base class for defining methods that need not or must not be called multiple times for the same simulation step.
abstractmodelmethod()
Alternative for Python’sabstractmethod()
.
SubmodelProperty
Descriptor for submodel attributes.
SubmodelsProperty
Descriptor for handling multiple submodels that follow defined interfaces.
SubmodelIsMainmodelProperty
Descriptor for boolean “submodel_is_mainmodel” attributes.
SubmodelTypeIDProperty
Descriptor for integer “submodel_typeid” attributes.
IndexProperty
Base class for index descriptors likeIdx_Sim
.
Idx_Sim
The simulation step index.
Idx_HRU
The hydrological response unit index.
Idx_Segment
The segment index.
Idx_Run
The run index.
DocName
Definitions for the documentation names of specific base or application models.
Model
Base class for all hydrological models.
RunModel
Base class forAdHocModel
andSegmentModel
that introduces so-called “run methods”, which need to be executed in the order of their positions in theRUN_METHODS
tuple.
AdHocModel
Base class for models solving the underlying differential equations in an “ad hoc manner”.
SegmentModel
Base class for (routing) models that solve the underlying differential equations “segment-wise”.
SubstepModel
Base class for (routing) models that solve the underlying differential equations “substep-wise”.
SolverModel
Base class for hydrological models, which solve ordinary differential equations with numerical integration algorithms.
NumConstsELS
Configuration options for using the “Explicit Lobatto Sequence” implemented by classELSModel
.
NumVarsELS
Intermediate results of the “Explicit Lobatto Sequence” implemented by classELSModel
.
ELSModel
Base class for hydrological models using the “Explicit Lobatto Sequence” for solving ordinary differential equations.
SubmodelInterface
Base class for defining interfaces for submodels.
SharableSubmodelInterface
Base class for defining interfaces for submodels designed as “sharable”.
Submodel
Base class for implementing “submodels” that serve to deal with (possibly complicated) general mathematical algorithms (e.g. root-finding algorithms) within hydrological model methods.
CoupleModels
Specification for defining custom “couple_models” functions to be wrapped by functiondefine_modelcoupler()
.
define_modelcoupler()
Wrap a model-specific function for creating a composite model based given onNode
andElement
objects and their handled “normal”Model
instances.
ModelCoupler
Wrapper that extends the functionality of model-specific functions for coupling “normal” models to composite models.
- class hydpy.core.modeltools.Method[source]¶
Bases:
object
Base class for defining (hydrological) calculation methods.
- class hydpy.core.modeltools.AutoMethod[source]¶
Bases:
Method
Base class for defining methods that only call their submethods in the specified order without passing any arguments or other customisations.
- class hydpy.core.modeltools.SetAutoMethod[source]¶
Bases:
Method
Base class for defining setter methods that also use the given data to calculate other properties.
SetAutoMethod
calls its submethods in the specified order. If, for example, the first two submethods are setters, it requires precisely two parameter values. It passes the first value to the first setter and the second value to the second setter. After that, it executes the remaining methods without exchanging any data.
- class hydpy.core.modeltools.ReusableMethod[source]¶
Bases:
Method
Base class for defining methods that need not or must not be called multiple times for the same simulation step.
ReusableMethod
helps to implement “sharable” submodels, of which single instances can be used by multiple main model instances. SeeSharableSubmodelInterface
for further information.- REUSEMARKER: str¶
Name of an additional model attribute for marking if the respective method has already been called and should not be called again for the same simulation step and its results can be reused.
- classmethod call_reusablemethod(model: Model, *args, **kwargs) None [source]¶
Execute the “normal” model-specific __call__ method only when indicated by the
REUSEMARKER
attribute and update this attribute when necessary.
- hydpy.core.modeltools.abstractmodelmethod(method: Callable[[P], T]) Callable[[P], T] [source]¶
Alternative for Python’s
abstractmethod()
.We currently use it to mark abstract methods in submodel interfaces that are not statically overridden by concrete implementations but dynamically added during model initialisation (either in a pure Python or a Cython version).
So far, the only functionality of
abstractmodelmethod()
is to collect all decorated functions in the set abstractmodelmethods so that one can find out which methods are “abstract model methods” and which are not. We might also use it later to extend our model consistency checks.
- class hydpy.core.modeltools.SubmodelProperty(*interfaces: type[TypeSubmodelInterface], optional: bool = False, sidemodel: bool = False)[source]¶
Bases:
_SubmodelPropertyBase
[TypeSubmodelInterface
]Descriptor for submodel attributes.
SubmodelProperty
instances link main models and their submodels. They follow the attribute convention described in the documentation on classSubmodelInterface
. Behind the scenes, they build the required connections both on the Python and the Cython level and perform some type-related tests (to avoid errors due to selecting submodels following the wrong interfaces).We prepare the main model and its submodel in Cython and pure Python mode to test that
SubmodelProperty
works for all possible combinations:>>> from hydpy import prepare_model, pub >>> with pub.options.usecython(False): ... mainmodel_python = prepare_model("lland") ... submodel_python = prepare_model("ga_garto_submodel1") >>> with pub.options.usecython(True): ... mainmodel_cython = prepare_model("lland") ... submodel_cython = prepare_model("ga_garto_submodel1")
By default, the main model handles no submodel:
>>> mainmodel_python.soilmodel >>> mainmodel_cython.soilmodel
For pure Python main models, it makes no difference how the submodel is initialised:
>>> mainmodel_python.soilmodel = submodel_python >>> type(mainmodel_python.soilmodel) <class 'hydpy.models.ga_garto_submodel1.Model'> >>> mainmodel_python.cymodel
>>> mainmodel_python.soilmodel = submodel_cython >>> type(mainmodel_python.soilmodel) <class 'hydpy.models.ga_garto_submodel1.Model'> >>> mainmodel_python.cymodel
If both models are initialised in Cython mode,
SubmodelProperty
connects the instances of the Cython extension classes on the fly:>>> mainmodel_cython.soilmodel = submodel_cython >>> type(mainmodel_cython.soilmodel) <class 'hydpy.models.ga_garto_submodel1.Model'> >>> type(mainmodel_cython.cymodel.get_soilmodel()) <class 'hydpy.cythons.autogen.c_ga_garto_submodel1.Model'>
Combining a Cython main model with a pure Python submodel causes a
RuntimeError
, as using such a mix could result in hard-to-find errors:>>> mainmodel_cython.soilmodel = submodel_python Traceback (most recent call last): ... RuntimeError: While trying to assign submodel `ga_garto_submodel1` to property `soilmodel` of the main model `lland`, the following error occurred: The main model is initialised in Cython mode, but the submodel is initialised in pure Python mode so that the main model's cythonized methods could apply the submodel's methods.
Disconnecting a submodel from its main model works by assigning
None
as well as using the del statement:>>> mainmodel_python.soilmodel = None >>> mainmodel_python.soilmodel
>>> del mainmodel_cython.soilmodel >>> mainmodel_cython.soilmodel >>> mainmodel_cython.cymodel.get_soilmodel()
Trying to assign an unsuitable submodel results in the following error:
>>> mainmodel_python.soilmodel = mainmodel_python Traceback (most recent call last): ... ValueError: While trying to assign submodel `lland` to property `soilmodel` of the main model `lland`, the following error occurred: The given submodel is not an instance of any of the following supported interfaces: SoilModel_V1.
The automatically generated docstrings list the supported interfaces:
>>> print(type(mainmodel_python).soilmodel.__doc__) Optional submodel that complies with the following interface: SoilModel_V1.
- class hydpy.core.modeltools.SubmodelsProperty(*interfaces: type[TypeSubmodelInterface], sidemodels: bool = False)[source]¶
Bases:
_SubmodelPropertyBase
[TypeSubmodelInterface
]Descriptor for handling multiple submodels that follow defined interfaces.
SubmodelsProperty
supports the len operator and is iterable and indexable:>>> from hydpy import prepare_model >>> main = prepare_model("sw1d_channel") >>> sub1 = prepare_model("sw1d_q_in") >>> sub2 = prepare_model("sw1d_lias")
>>> from hydpy.core.modeltools import SubmodelsProperty >>> assert isinstance(type(main).routingmodels, SubmodelsProperty)
>>> main.routingmodels.append_submodel(submodel=sub1, typeid=1) >>> main.routingmodels.append_submodel(submodel=sub2, typeid=1) >>> len(main.routingmodels) 2 >>> for submodel in main.routingmodels: ... print(submodel.name) sw1d_q_in sw1d_lias >>> main.routingmodels[0] is sub1 True >>> main.routingmodels[1] is sub2 True
- sidemodels: bool¶
Flag indicating whether the handled submodel is more a “side model” than a submodel. Usually, two models consider each other as side models if they are “real” submodels of a third model but need direct references.
- property number: int¶
The maximum number of handled submodels.
Initially, the maximum number of submodels is zero:
>>> from hydpy import prepare_model, pub >>> with pub.options.usecython(False): ... model = prepare_model("sw1d_channel") >>> model.storagemodels.number 0 >>> model.storagemodels.submodels () >>> model.storagemodels.typeids ()
Setting it to another value automatically prepares
typeids
andsubmodels
:>>> model.storagemodels.number = 2 >>> model.storagemodels.number 2 >>> model.storagemodels.typeids (0, 0) >>> model.storagemodels.submodels (None, None)
When working in Cython mode, property
number
also prepares the analogue vectors of the cythonized model:>>> with pub.options.usecython(True): ... model = prepare_model("sw1d_channel") >>> model.storagemodels.number 0 >>> model.storagemodels.submodels () >>> model.storagemodels.typeids ()
>>> model.storagemodels.number = 2 >>> model.storagemodels.number 2 >>> model.storagemodels.submodels (None, None) >>> model.storagemodels.typeids (0, 0) >>> model.cymodel.storagemodels._get_number() 2 >>> model.cymodel.storagemodels._get_typeid(0) 0 >>> model.cymodel.storagemodels._get_submodel(0)
- put_submodel(submodel: TypeSubmodelInterface, typeid: int, position: int) None [source]¶
Put a submodel and its relevant type ID to the given position.
We prepare the main model and its submodel in Cython and pure Python mode to test that
put_submodel()
works for all possible combinations:>>> from hydpy import prepare_model, pub >>> with pub.options.usecython(False): ... main_py = prepare_model("sw1d_channel") ... sub_py = prepare_model("sw1d_storage") >>> with pub.options.usecython(True): ... main_cy = prepare_model("sw1d_channel") ... sub_cy = prepare_model("sw1d_storage")
For two pure Python models, there is no need to bother with synchronising cythonized models:
>>> main_py.storagemodels.number = 2 >>> main_py.storagemodels.put_submodel(submodel=sub_py, typeid=1, position=0) >>> assert main_py.storagemodels.typeids[0] == 1 >>> assert main_py.storagemodels.submodels[0] is sub_py >>> assert main_py.storagemodels.typeids[1] == 0 >>> assert main_py.storagemodels.submodels[1] is None
If both models are initialised in Cython mode,
put_submodel()
updatestypeids
andsubmodels
as well as the corresponding vectors of the cythonized models:>>> main_cy.storagemodels.number = 2 >>> main_cy.storagemodels.put_submodel(submodel=sub_cy, typeid=1, position=0) >>> assert main_cy.storagemodels.typeids[0] == 1 >>> assert main_cy.cymodel.storagemodels._get_typeid(0) == 1 >>> assert main_cy.storagemodels.submodels[0] is sub_cy >>> assert main_cy.cymodel.storagemodels._get_submodel(0) is sub_cy.cymodel >>> assert main_cy.storagemodels.typeids[1] == 0 >>> assert main_cy.cymodel.storagemodels._get_typeid(1) == 0 >>> assert main_cy.storagemodels.submodels[1] is None >>> assert main_cy.cymodel.storagemodels._get_submodel(1) is None
Connecting a pure Python mode main model with a Cython mode submodel causes no harm:
>>> main_py.storagemodels.number = 0 >>> main_py.storagemodels.number = 2 >>> main_py.storagemodels.put_submodel(submodel=sub_cy, typeid=1, position=0) >>> assert main_py.storagemodels.typeids[0] == 1 >>> assert main_py.storagemodels.submodels[0] is sub_cy >>> assert main_py.storagemodels.typeids[1] == 0 >>> assert main_py.storagemodels.submodels[1] is None
However, connecting a Cython mode main model with a pure Python mode submodel would result in erroneous calculations and thus raises the following error:
>>> main_cy.storagemodels.number = 0 >>> main_cy.storagemodels.number = 2 >>> main_cy.storagemodels.put_submodel(submodel=sub_py, typeid=1, position=0) Traceback (most recent call last): ... RuntimeError: While trying to put submodel `sw1d_storage` to position `0` of property `storagemodels` of the main model `sw1d_channel`, the following error occurred: The main model is initialised in Cython mode, but the submodel is initialised in pure Python mode so that the main model's cythonized methods could apply the submodel's methods. >>> assert main_cy.storagemodels.typeids[0] == 0 >>> assert main_cy.cymodel.storagemodels._get_typeid(0) == 0 >>> assert main_cy.storagemodels.submodels[0] is None >>> assert main_cy.cymodel.storagemodels._get_submodel(0) is None >>> assert main_cy.storagemodels.typeids[1] == 0 >>> assert main_cy.cymodel.storagemodels._get_typeid(1) == 0 >>> assert main_cy.storagemodels.submodels[1] is None >>> assert main_cy.cymodel.storagemodels._get_submodel(1) is None
Method
put_submodel()
checks if the given submodel follows at least one supported interface:>>> sub_py = prepare_model("sw1d_lias") >>> main_py.storagemodels.number = 0 >>> main_py.storagemodels.number = 2 >>> main_py.storagemodels.put_submodel(submodel=sub_py, typeid=1, position=0) Traceback (most recent call last): ... ValueError: While trying to put submodel `sw1d_lias` to position `0` of property `storagemodels` of the main model `sw1d_channel`, the following error occurred: The given submodel is not an instance of any of the following supported interfaces: StorageModel_V1. >>> assert main_py.storagemodels.typeids[0] == 0 >>> assert main_py.storagemodels.submodels[0] is None >>> assert main_py.storagemodels.typeids[1] == 0 >>> assert main_py.storagemodels.submodels[1] is None
- delete_submodel(position: int) None [source]¶
Delete the submodel at the given position.
We prepare the main model and its submodel in Cython and pure Python mode to test that
delete_submodel()
works both in Cython and pure Python Cython mode:>>> from hydpy import prepare_model, pub >>> with pub.options.usecython(False): ... main_py = prepare_model("sw1d_channel") ... sub_py = prepare_model("sw1d_storage") >>> with pub.options.usecython(True): ... main_cy = prepare_model("sw1d_channel") ... sub_cy = prepare_model("sw1d_storage")
In pure Python mode,
delete_submodel()
resets the entry in the submodel vector toNone
and the type ID to zero:>>> main_py.storagemodels.number = 3 >>> main_py.storagemodels.put_submodel(submodel=sub_py, typeid=1, position=1) >>> assert main_py.storagemodels.typeids[1] == 1 >>> assert main_py.storagemodels.submodels[1] is sub_py
>>> main_py.storagemodels.delete_submodel(position=1) >>> assert main_py.storagemodels.typeids[1] == 0 >>> assert main_py.storagemodels.submodels[1] is None
In Cython mode,
delete_submodel()
does the same for the analogue C vectors:>>> main_cy.storagemodels.number = 3 >>> main_cy.storagemodels.put_submodel(submodel=sub_cy, typeid=1, position=1) >>> assert main_cy.storagemodels.typeids[1] == 1 >>> assert main_cy.cymodel.storagemodels._get_typeid(1) == 1 >>> assert main_cy.storagemodels.submodels[1] is sub_cy >>> assert main_cy.cymodel.storagemodels._get_submodel(1) is sub_cy.cymodel
>>> main_cy.storagemodels.delete_submodel(position=1) >>> assert main_cy.storagemodels.typeids[1] == 0 >>> assert main_cy.cymodel.storagemodels._get_typeid(1) == 0 >>> assert main_cy.storagemodels.submodels[1] is None >>> assert main_cy.cymodel.storagemodels._get_submodel(1) is None
Calling
delete_submodel()
for a position with an existing submodel does not raise a warning or error:>>> main_cy.storagemodels.delete_submodel(position=1)
Potential errors are reported like this:
>>> main_cy.storagemodels.delete_submodel(position=3) Traceback (most recent call last): ... IndexError: While trying to delete a submodel at position `3` of property `storagemodels` of the main model `sw1d_channel`, the following error occurred: list assignment index out of range
- append_submodel(submodel: TypeSubmodelInterface, typeid: int | None = None) None [source]¶
Append a submodel and its relevant type ID to the already available ones.
We prepare the main model and its submodel in Cython and pure Python mode to test that
append_submodel()
works for all possible combinations:>>> from hydpy import prepare_model, pub >>> with pub.options.usecython(False): ... main_py = prepare_model("sw1d_channel") ... sub_py = prepare_model("sw1d_storage") >>> with pub.options.usecython(True): ... main_cy = prepare_model("sw1d_channel") ... sub_cy = prepare_model("sw1d_storage")
For two pure Python models, there is no need to bother with synchronising cythonized models:
>>> main_py.storagemodels.append_submodel(submodel=sub_py, typeid=1) >>> assert main_py.storagemodels.number == 1 >>> assert main_py.storagemodels.typeids[0] == 1 >>> assert main_py.storagemodels.submodels[0] is sub_py
If both models are initialised in Cython mode,
append_submodel()
updatestypeids
andsubmodels
as well as the corresponding vectors of the cythonized models:>>> main_cy.storagemodels.append_submodel(submodel=sub_cy, typeid=1) >>> assert main_cy.storagemodels.number == 1 >>> assert main_cy.storagemodels.typeids[0] == 1 >>> assert main_cy.cymodel.storagemodels._get_typeid(0) == 1 >>> assert main_cy.storagemodels.submodels[0] is sub_cy >>> assert main_cy.cymodel.storagemodels._get_submodel(0) is sub_cy.cymodel
Connecting a pure Python mode main model with a Cython mode submodel causes no harm:
>>> main_py.storagemodels.append_submodel(submodel=sub_cy, typeid=1) >>> assert main_py.storagemodels.number == 2 >>> assert main_py.storagemodels.typeids[0] == 1 >>> assert main_py.storagemodels.submodels[0] is sub_py >>> assert main_py.storagemodels.typeids[1] == 1 >>> assert main_py.storagemodels.submodels[1] is sub_cy
However, connecting a Cython mode main model with a pure Python mode submodel would result in erroneous calculations and thus raises the following error:
>>> main_cy.storagemodels.append_submodel(submodel=sub_py, typeid=1) Traceback (most recent call last): ... RuntimeError: While trying to append submodel `sw1d_storage` to property `storagemodels` of the main model `sw1d_channel`, the following error occurred: The main model is initialised in Cython mode, but the submodel is initialised in pure Python mode so that the main model's cythonized methods could apply the submodel's methods.
>>> assert main_cy.storagemodels.number == 1 >>> assert main_cy.storagemodels.typeids[0] == 1 >>> assert main_cy.cymodel.storagemodels._get_typeid(0) == 1 >>> assert main_cy.storagemodels.submodels[0] is sub_cy >>> assert main_cy.cymodel.storagemodels._get_submodel(0) is sub_cy.cymodel
Method
append_submodel()
checks if the given submodel follows at least one supported interface:>>> sub_wrong = prepare_model("sw1d_lias") >>> main_py.storagemodels.append_submodel(submodel=sub_wrong, typeid=1) Traceback (most recent call last): ... ValueError: While trying to append submodel `sw1d_lias` to property `storagemodels` of the main model `sw1d_channel`, the following error occurred: The given submodel is not an instance of any of the following supported interfaces: StorageModel_V1.
>>> assert main_py.storagemodels.number == 2 >>> assert main_py.storagemodels.typeids[0] == 1 >>> assert main_py.storagemodels.submodels[0] is sub_py >>> assert main_py.storagemodels.typeids[1] == 1 >>> assert main_py.storagemodels.submodels[1] is sub_cy
For convenience, you can omit to pass the type ID.
append_submodel()
then detects the first suitable ID automatically:>>> main_py.routingmodels.append_submodel(prepare_model("sw1d_weir_out")) >>> main_py.routingmodels.append_submodel(prepare_model("sw1d_q_in")) >>> main_py.routingmodels.append_submodel(prepare_model("sw1d_lias")) >>> assert main_py.routingmodels.number == 3 >>> assert main_py.routingmodels.typeids == (3, 1, 2)
Method
append_submodel()
checks if the given submodel follows at least one supported interface:>>> main_py.routingmodels[0].routingmodelsupstream.append_submodel( ... prepare_model("sw1d_q_out")) Traceback (most recent call last): ... ValueError: While trying to append submodel `sw1d_q_out` to property `routingmodelsupstream` of the main model `sw1d_weir_out`, the following error occurred: The given submodel is not an instance of any of the following supported interfaces: RoutingModel_V1 and RoutingModel_V2.
- property submodels: tuple[TypeSubmodelInterface | None, ...]¶
The currently handled submodels.
>>> from hydpy import prepare_model >>> main = prepare_model("sw1d_channel") >>> sub1 = prepare_model("sw1d_q_in") >>> sub2 = prepare_model("sw1d_lias") >>> main.routingmodels.append_submodel(submodel=sub1, typeid=1) >>> main.routingmodels.append_submodel(submodel=sub2, typeid=1) >>> assert main.routingmodels.submodels == (sub1, sub2)
- property typeids: tuple[int, ...]¶
The interface-specific type IDs of the currently handled submodels.
>>> from hydpy import prepare_model >>> main = prepare_model("sw1d_channel") >>> sub1 = prepare_model("sw1d_q_in") >>> sub2 = prepare_model("sw1d_lias") >>> main.routingmodels.append_submodel(submodel=sub1, typeid=1) >>> main.routingmodels.append_submodel(submodel=sub2, typeid=1) >>> assert main.routingmodels.typeids == (1, 1)
- class hydpy.core.modeltools.SubmodelIsMainmodelProperty(doc: str | None = None)[source]¶
Bases:
object
Descriptor for boolean “submodel_is_mainmodel” attributes.
SubmodelIsMainmodelProperty
instances work like simple boolean attributes but silently synchronise the equally named boolean attributes of the corresponding cython model, if available:>>> from hydpy import prepare_model, pub >>> with pub.options.usecython(True): ... model = prepare_model("hland_96") >>> type(model).aetmodel_is_mainmodel._name 'aetmodel_is_mainmodel' >>> model.aetmodel_is_mainmodel False >>> model.cymodel.aetmodel_is_mainmodel 0 >>> model.aetmodel_is_mainmodel = True >>> model.aetmodel_is_mainmodel True >>> model.cymodel.aetmodel_is_mainmodel 1
- class hydpy.core.modeltools.SubmodelTypeIDProperty(doc: str | None = None)[source]¶
Bases:
object
Descriptor for integer “submodel_typeid” attributes.
SubmodelTypeIDProperty
instances work like simple integer attributes but silently synchronise the equally named integer attributes of the corresponding cython model, if available:>>> from hydpy import prepare_model, pub >>> with pub.options.usecython(True): ... model = prepare_model("hland_96") >>> type(model).aetmodel_typeid._name 'aetmodel_typeid' >>> model.aetmodel_typeid 0 >>> model.cymodel.aetmodel_typeid 0 >>> model.aetmodel_typeid = 1 >>> model.aetmodel_typeid 1 >>> model.cymodel.aetmodel_typeid 1
- class hydpy.core.modeltools.IndexProperty[source]¶
Bases:
object
Base class for index descriptors like
Idx_Sim
.
- class hydpy.core.modeltools.Idx_Sim[source]¶
Bases:
IndexProperty
The simulation step index.
Some model methods require knowing the index of the current simulation step (with respect to the initialisation period), which one usually updates by passing it to
simulate()
. However, you can change it manually via theIdx_Sim
descriptor, which is often beneficial during testing:>>> from hydpy.models.hland_96 import * >>> parameterstep("1d") >>> model.idx_sim 0 >>> model.idx_sim = 1 >>> model.idx_sim 1
Like other objects of
IndexProperty
subclasses,Idx_Sim
objects are aware of their name:>>> Model.idx_sim.name 'idx_sim'
- class hydpy.core.modeltools.Idx_HRU[source]¶
Bases:
IndexProperty
The hydrological response unit index.
The documentation on class
Idx_Sim
explains the general purpose and handling ofIndexProperty
instances.
- class hydpy.core.modeltools.Idx_Segment[source]¶
Bases:
IndexProperty
The segment index.
The documentation on class
Idx_Sim
explains the general purpose and handling ofIndexProperty
instances.
- class hydpy.core.modeltools.Idx_Run[source]¶
Bases:
IndexProperty
The run index.
The documentation on class
Idx_Sim
explains the general purpose and handling ofIndexProperty
instances.
- class hydpy.core.modeltools.DocName(short: str, description: str = 'base model')[source]¶
Bases:
NamedTuple
Definitions for the documentation names of specific base or application models.
- description: str¶
Description of a model, e.g. “extended version of the original Wageningen WALRUS model”.
- property long¶
Long name of a model.
>>> from hydpy.models.wland_wag import Model >>> Model.DOCNAME.long 'HydPy-W-Wag'
- class hydpy.core.modeltools.Model[source]¶
Bases:
object
Base class for all hydrological models.
Class
Model
provides everything to create a usable application model, except methodsimulate()
. See classesAdHocModel
andELSModel
, which implement this method.Class
Model
does not prepare the strongly required attributes parameters and sequences during initialisation. You need to add them manually whenever you want to prepare a workableModel
object on your own (see the factory functionsprepare_model()
andparameterstep()
, which do this regularly).Similar to parameters and sequences, there is also the dynamic masks attribute, making all predefined masks of the actual model type available within a
Masks
object:>>> from hydpy.models.hland_96 import * >>> parameterstep("1d") >>> model.masks complete of module hydpy.models.hland.hland_masks land of module hydpy.models.hland.hland_masks upperzone of module hydpy.models.hland.hland_masks snow of module hydpy.models.hland.hland_masks soil of module hydpy.models.hland.hland_masks field of module hydpy.models.hland.hland_masks forest of module hydpy.models.hland.hland_masks ilake of module hydpy.models.hland.hland_masks glacier of module hydpy.models.hland.hland_masks sealed of module hydpy.models.hland.hland_masks noglacier of module hydpy.models.hland.hland_masks
You can use these masks, for example, to average the zone-specific precipitation values handled by sequence
PC
. When passing no argument, methodaverage_values()
applies the complete mask. For example, pass mask land to average the values of all zones except those of typeILAKE
:>>> nmbzones(4) >>> zonetype(FIELD, FOREST, GLACIER, ILAKE) >>> zonearea.values = 1.0 >>> fluxes.pc = 1.0, 3.0, 5.0, 7.0 >>> fluxes.pc.average_values() 4.0 >>> fluxes.pc.average_values(model.masks.land) 3.0
- parameters: parametertools.Parameters¶
- sequences: sequencetools.Sequences¶
- masks: masktools.Masks¶
- idx_sim¶
The simulation step index.
- REUSABLE_METHODS: ClassVar[tuple[type[ReusableMethod], ...]]¶
- COMPOSITE: bool = False¶
Flag for informing whether the respective
Model
subclass is usually not directly applied by model users but behind the scenes for compositing all models owned by elements belonging to the samecollective
(see methodunite_collectives()
).
- cymodel: CyModelProtocol | None¶
- property element: Element¶
The model instance’s master element.
Usually, one assigns a
Model
instance to anElement
instance, but the other way round works as well (for more information, see the documentation on propertymodel
of classElement
):>>> from hydpy import Element, prepare_model >>> from hydpy.core.modeltools import Model >>> model = prepare_model("musk_classic") >>> model.element Traceback (most recent call last): ... hydpy.core.exceptiontools.AttributeNotReady: Model `musk_classic` is not connected to an `Element` so far.
>>> e = Element("e") >>> model.element = e Traceback (most recent call last): ... RuntimeError: While trying to build the node connection of the `outlet` sequences of the model handled by element `e`, the following error occurred: Sequence `q` of element `e` cannot be connected due to no available node handling variable `Q`. >>> model.element Element("e") >>> e.model.name 'musk_classic'
>>> del model.element >>> model.element Traceback (most recent call last): ... hydpy.core.exceptiontools.AttributeNotReady: Model `musk_classic` is not connected to an `Element` so far. >>> e.model Traceback (most recent call last): ... hydpy.core.exceptiontools.AttributeNotReady: The model object of element `e` has been requested but not been prepared so far.
- connect() None [source]¶
Connect all
LinkSequence
objects and the selectedInputSequence
andOutputSequence
objects of the actual model to the correspondingNodeSequence
objects.You cannot connect any sequences until the
Model
object itself is connected to anElement
object referencing the requiredNode
objects:>>> from hydpy import prepare_model >>> prepare_model("musk_classic").connect() Traceback (most recent call last): ... hydpy.core.exceptiontools.AttributeNotReady: While trying to build the node connection of the `input` sequences of the model handled by element `?`, the following error occurred: Model `musk_classic` is not connected to an `Element` so far.
The application model
musk_classic
can receive inflow from an arbitrary number of upstream nodes and passes its outflow to a single downstream node (note that propertymodel
of classElement
calls methodconnect()
automatically):>>> from hydpy import Element, Node >>> in1 = Node("in1", variable="Q") >>> in2 = Node("in2", variable="Q") >>> out1 = Node("out1", variable="Q")
>>> element1 = Element("element1", inlets=(in1, in2), outlets=out1) >>> element1.model = prepare_model("musk_classic")
Now all connections work as expected:
>>> in1.sequences.sim = 1.0 >>> in2.sequences.sim = 2.0 >>> out1.sequences.sim = 3.0 >>> element1.model.sequences.inlets.q q(1.0, 2.0) >>> element1.model.sequences.outlets.q q(3.0) >>> element1.model.sequences.inlets.q *= 2.0 >>> element1.model.sequences.outlets.q *= 2.0 >>> in1.sequences.sim sim(2.0) >>> in2.sequences.sim sim(4.0) >>> out1.sequences.sim sim(6.0)
To show some possible errors and related error messages, we define three additional nodes, two handling variables different from discharge (Q):
>>> in3 = Node("in3", variable="X") >>> out2 = Node("out2", variable="Q") >>> out3 = Node("out3", variable="X")
Link sequence names must match the variable a node is handling:
>>> element2 = Element("element2", inlets=(in1, in2), outlets=out3) >>> element2.model = prepare_model("musk_classic") Traceback (most recent call last): ... RuntimeError: While trying to build the node connection of the `outlet` sequences of the model handled by element `element2`, the following error occurred: Sequence `q` of element `element2` cannot be connected due to no available node handling variable `Q`.
One can connect a 0-dimensional link sequence to a single node sequence only:
>>> element3 = Element("element3", inlets=(in1, in2), outlets=(out1, out2)) >>> element3.model = prepare_model("musk_classic") Traceback (most recent call last): ... RuntimeError: While trying to build the node connection of the `outlet` sequences of the model handled by element `element3`, the following error occurred: Sequence `q` cannot be connected as it is 0-dimensional but multiple nodes are available which are handling variable `Q`.
Method
connect()
generally reports about unusable node sequences:>>> element4 = Element("element4", inlets=(in1, in2), outlets=(out1, out3)) >>> element4.model = prepare_model("musk_classic") Traceback (most recent call last): ... RuntimeError: While trying to build the node connection of the `outlet` sequences of the model handled by element `element4`, the following error occurred: The following nodes have not been connected to any sequences: out3.
>>> element5 = Element("element5", inlets=(in1, in2, in3), outlets=out1) >>> element5.model = prepare_model("musk_classic") Traceback (most recent call last): ... RuntimeError: While trying to build the node connection of the `inlet` sequences of the model handled by element `element5`, the following error occurred: The following nodes have not been connected to any sequences: in3.
>>> element6 = Element("element6", inlets=in1, outlets=out1, receivers=in2) >>> element6.model = prepare_model("musk_classic") Traceback (most recent call last): ... RuntimeError: While trying to build the node connection of the `receiver` sequences of the model handled by element `element6`, the following error occurred: The following nodes have not been connected to any sequences: in2.
>>> element7 = Element("element7", inlets=in1, outlets=out1, senders=in2) >>> element7.model = prepare_model("musk_classic") Traceback (most recent call last): ... RuntimeError: While trying to build the node connection of the `sender` sequences of the model handled by element `element7`, the following error occurred: The following nodes have not been connected to any sequences: in2.
The above examples explain how to connect link sequences to their nodes. Such connections are relatively hard requirements (
musk_classic
definitively needs inflow provided from a node, which the node itself typically receives from another model). In contrast, connections between input or output sequences and nodes are optional. If one defines such a connection for an input sequence, it receives data from the related node; otherwise, it uses its individually managed data, usually read from a file. If one defines such a connection for an output sequence, it passes its internal data to the related node; otherwise, nothing happens.We demonstrate this functionality by focussing on the input sequences
T
andP
and the output sequencesQ0
andUZ
of application modelhland_96
.T
uses its own data (which we define manually, but we could read it from a file as well), whereasP
gets its data from node inp1. Flux sequenceQ0
and state sequenceUZ
pass their data to two separate output nodes, whereas all other fluxes and states do not. This functionality requires telling each node which sequence it should connect to, which we do by passing the sequence types (or the globally available aliases hland_inputs_P, hland_fluxes_Q0, and hland_states_UZ) to the variable keyword of different node objects:>>> from hydpy import pub >>> from hydpy.aliases import hland_inputs_P, hland_fluxes_Q0, hland_states_UZ >>> pub.timegrids = "2000-01-01", "2000-01-06", "1d"
>>> inp1 = Node("inp1", variable=hland_inputs_P) >>> outp1 = Node("outp1", variable=hland_fluxes_Q0) >>> outp2 = Node("outp2", variable=hland_states_UZ) >>> element8 = Element("element8", outlets=out1, inputs=inp1, ... outputs=[outp1, outp2]) >>> element8.model = prepare_model("hland_96") >>> element8.prepare_inputseries() >>> element8.model.sequences.inputs.t.series = 1.0, 2.0, 3.0, 4.0, 5.0 >>> inp1.sequences.sim(9.0) >>> element8.model.load_data(2) >>> element8.model.sequences.inputs.t t(3.0) >>> element8.model.sequences.inputs.p p(9.0) >>> element8.model.sequences.fluxes.q0 = 99.0 >>> element8.model.sequences.states.uz = 999.0 >>> element8.model.update_outputs() >>> outp1.sequences.sim sim(99.0) >>> outp2.sequences.sim sim(999.0)
Instead of using single
InputSequence
andOutputSequence
subclasses, one can create and apply fused variables, combining multiple subclasses (see the documentation on classFusedVariable
for more information and a more realistic example):>>> from hydpy import FusedVariable >>> from hydpy.aliases import lland_inputs_Nied, lland_fluxes_QDGZ >>> Precip = FusedVariable("Precip", hland_inputs_P, lland_inputs_Nied) >>> inp2 = Node("inp2", variable=Precip) >>> FastRunoff = FusedVariable("FastRunoff", hland_fluxes_Q0, lland_fluxes_QDGZ) >>> outp3 = Node("outp3", variable=FastRunoff) >>> element9 = Element("element9", outlets=out1, inputs=inp2, outputs=outp3) >>> element9.model = prepare_model("hland_96") >>> inp2.sequences.sim(9.0) >>> element9.model.load_data(0) >>> element9.model.sequences.inputs.p p(9.0) >>> element9.model.sequences.fluxes.q0 = 99.0 >>> element9.model.update_outputs() >>> outp3.sequences.sim sim(99.0)
Method
connect()
reports if one of the given fused variables does not find a fitting sequence:>>> from hydpy.aliases import lland_inputs_TemL >>> Wrong = FusedVariable("Wrong", lland_inputs_Nied, lland_inputs_TemL) >>> inp3 = Node("inp3", variable=Wrong) >>> element10 = Element("element10", outlets=out1, inputs=inp3) >>> element10.model = prepare_model("hland_96") Traceback (most recent call last): ... RuntimeError: While trying to build the node connection of the `input` sequences of the model handled by element `element10`, the following error occurred: The following nodes have not been connected to any sequences: inp3.
>>> outp4 = Node("outp4", variable=Wrong) >>> element11 = Element("element11", outlets=out1, outputs=outp4) >>> element11.model = prepare_model("hland_96") Traceback (most recent call last): ... TypeError: While trying to build the node connection of the `output` sequences of the model handled by element `element11`, the following error occurred: None of the output sequences of model `hland_96` is among the sequences of the fused variable `Wrong` of node `outp4`.
Selecting the wrong sequences results in the following error messages:
>>> outp5 = Node("outp5", variable=hland_fluxes_Q0) >>> element12 = Element("element12", outlets=out1, inputs=outp5) >>> element12.model = prepare_model("hland_96") Traceback (most recent call last): ... RuntimeError: While trying to build the node connection of the `input` sequences of the model handled by element `element12`, the following error occurred: The following nodes have not been connected to any sequences: outp5.
>>> inp5 = Node("inp5", variable="P") >>> element13 = Element("element13", outlets=out1, outputs=inp5) >>> element13.model = prepare_model("hland_96") Traceback (most recent call last): ... TypeError: While trying to build the node connection of the `output` sequences of the model handled by element `element13`, the following error occurred: No factor, flux, or state sequence of model `hland_96` is named `p`.
So far, you can build connections to 0-dimensional output sequences only:
>>> from hydpy.models.hland.hland_fluxes import PC >>> outp6 = Node("outp6", variable=PC) >>> element14 = Element("element14", outlets=out1, outputs=outp6) >>> element14.model = prepare_model("hland_96") Traceback (most recent call last): ... TypeError: While trying to build the node connection of the `output` sequences of the model handled by element `element14`, the following error occurred: Only connections with 0-dimensional output sequences are supported, but sequence `pc` is 1-dimensional.
FusedVariable
also supportsReceiverSequence
for passing information from output nodes to receiver sequences (instead of input sequences, which we demonstrated in the above examples). We take the receiver sequencesOWL
(outer water level) andRWL
(remote water level) used by the application modeldam_pump
as an example:>>> from hydpy.aliases import dam_receivers_OWL, dam_receivers_RWL
One
dam_pump
instance (handled by element dam1) shall receive the water level (WaterLevel
) of two independentdam_pump
instances. dam1 interprets the water level of dam2 as its outer water level and the water level of dam3 as its remote water level:>>> from hydpy.aliases import dam_factors_WaterLevel >>> owl = FusedVariable("OWL", dam_receivers_OWL, dam_factors_WaterLevel) >>> rwl = FusedVariable("RWL", dam_receivers_RWL, dam_factors_WaterLevel) >>> n21, n31 = Node("n21", variable=owl), Node("n31", variable=rwl) >>> x, y = Node("x", variable=owl), Node("y", variable=rwl) >>> dam1 = Element("dam1", inlets="n01", outlets="n12", ... receivers=(n21, n31)) >>> dam2 = Element("dam2", inlets="n12", outlets="n23", ... receivers=(x,y), outputs=n21) >>> dam3 = Element("dam3", inlets="n23", outlets="n34", ... receivers=(x, y), outputs=n31) >>> dam1.model = prepare_model("dam_pump") >>> dam2.model = prepare_model("dam_pump") >>> dam3.model = prepare_model("dam_pump")
We confirm that all connections are correctly built by letting dam2 and dam3 send different water levels:
>>> dam2.model.sequences.factors.waterlevel = 2.0 >>> dam2.model.update_outputs() >>> dam3.model.sequences.factors.waterlevel = 3.0 >>> dam3.model.update_outputs() >>> dam1.model.sequences.receivers.owl owl(2.0) >>> dam1.model.sequences.receivers.rwl rwl(3.0)
- property name: str¶
Name of the model type.
For base models,
name
corresponds to the package name:>>> from hydpy import prepare_model >>> hland = prepare_model("hland") >>> hland.name 'hland'
For application models,
name
to corresponds the module name:>>> hland_96 = prepare_model("hland_96") >>> hland_96.name 'hland_96'
This last example has only technical reasons:
>>> hland.name 'hland'
- prepare_allseries(allocate_ram: bool = True, jit: bool = False) None [source]¶
Call method
prepare_inputseries()
with read_jit=jit and methodsprepare_factorseries()
,prepare_fluxseries()
, andprepare_stateseries()
with write_jit=jit.
- prepare_inputseries(allocate_ram: bool = True, read_jit: bool = False, write_jit: bool = False) None [source]¶
Call method
prepare_series()
of all directly handledInputSequence
objects.
- prepare_factorseries(allocate_ram: bool = True, read_jit: bool = False, write_jit: bool = False) None [source]¶
Call method
prepare_series()
of all directly handledFactorSequence
objects.
- prepare_fluxseries(allocate_ram: bool = True, read_jit: bool = False, write_jit: bool = False) None [source]¶
Call method
prepare_series()
of all directly handledFluxSequence
.
- prepare_stateseries(allocate_ram: bool = True, read_jit: bool = False, write_jit: bool = False) None [source]¶
Call method
prepare_series()
of all directly handledStateSequence
objects and.
- load_allseries() None [source]¶
Call method
load_inputseries()
,load_factorseries()
,load_fluxseries()
, andload_stateseries()
.
- load_inputseries() None [source]¶
Call method
load_series()
of all directly handledInputSequence
objects.
- load_factorseries() None [source]¶
Call method
load_series()
of all directly handledFactorSequence
objects.
- load_fluxseries() None [source]¶
Call method
load_series()
of all directly handledFluxSequence
objects.
- load_stateseries() None [source]¶
Call method
load_series()
of all directly handledStateSequence
objects.
- save_allseries() None [source]¶
Call method
save_inputseries()
,save_factorseries()
,save_fluxseries()
, andsave_stateseries()
.
- save_inputseries() None [source]¶
Call method
save_series()
of all directly handledInputSequence
objects.
- save_factorseries() None [source]¶
Call method
save_series()
of all directly handledFactorSequence
objects.
- save_fluxseries() None [source]¶
Call method
save_series()
of all directly handledFluxSequence
objects.
- save_stateseries() None [source]¶
Call method
save_series()
of all directly handledStateSequence
objects.
- get_controlfileheader(import_submodels: bool = True, parameterstep: timetools.PeriodConstrArg | None = None, simulationstep: timetools.PeriodConstrArg | None = None) str [source]¶
Return the header of a parameter control file.
The header contains the default coding information, the model import commands and the actual parameter and simulation step sizes:
>>> from hydpy import prepare_model, pub >>> model = prepare_model("hland_96") >>> model.aetmodel = prepare_model("evap_aet_hbv96") >>> pub.timegrids = "2000.01.01", "2001.01.01", "1h" >>> print(model.get_controlfileheader()) # -*- coding: utf-8 -*- from hydpy.models.hland_96 import * from hydpy.models import evap_aet_hbv96 simulationstep("1h") parameterstep("1d")
Optionally, you can omit the submodel import lines and define alternative parameter step and simulation step sizes:
>>> print(model.get_controlfileheader( ... import_submodels=False, parameterstep="2d", simulationstep="3d")) # -*- coding: utf-8 -*- from hydpy.models.hland_96 import * simulationstep("3d") parameterstep("2d")
- save_controls(parameterstep: timetools.PeriodConstrArg | None = None, simulationstep: timetools.PeriodConstrArg | None = None, auxfiler: auxfiletools.Auxfiler | None = None, filepath: str | None = None) None [source]¶
Write the control parameters (and eventually some solver parameters) to a control file.
Usually, a control file consists of a header (see the documentation on the method
get_controlfileheader()
) and the string representations of the individualParameter
objects handled by the controlSubParameters
object.The main functionality of method
save_controls()
is demonstrated in the documentation on methodsave_controls()
of classHydPy
, which one should apply to write the parameter information of complete HydPy projects. However, callingsave_controls()
on individualModel
objects offers the advantage of choosing an arbitrary file path, as shown in the following example:>>> from hydpy.models.test_stiff1d import * >>> parameterstep("1d") >>> simulationstep("1h") >>> k(0.1) >>> n(3)
>>> from hydpy import Open >>> with Open(): ... model.save_controls(filepath="otherdir/otherfile.py") ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ otherdir/otherfile.py --------------------------------------- # -*- coding: utf-8 -*- from hydpy.models.test_stiff1d import * simulationstep("1h") parameterstep("1d") k(0.1) n(3) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Method
save_controls()
also writes the string representations of allSolverParameter
objects with non-default values into the control file:>>> solver.abserrormax(1e-6) >>> with Open(): ... model.save_controls(filepath="otherdir/otherfile.py") ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ otherdir/otherfile.py --------------------------------------- # -*- coding: utf-8 -*- from hydpy.models.test_stiff1d import * simulationstep("1h") parameterstep("1d") k(0.1) n(3) solver.abserrormax(0.000001) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Without a given file path and a proper project configuration, method
save_controls()
raises the following error:>>> model.save_controls() Traceback (most recent call last): ... RuntimeError: To save the control parameters of a model to a file, its filename must be known. This can be done, by passing a filename to function `save_controls` directly. But in complete HydPy applications, it is usally assumed to be consistent with the name of the element handling the model.
Submodels like
meteo_glob_fao56
allow using their instances by multiple main models. We prepare such a case by selecting such an instance as the submodel of the absolute main modellland_knauf
and the the relative submodelevap_aet_morsim
:>>> from hydpy.core.importtools import reverse_model_wildcard_import >>> reverse_model_wildcard_import()
>>> from hydpy import pub >>> pub.timegrids = "2000-01-01", "2001-01-02", "1d" >>> from hydpy.models.lland_knauf import * >>> parameterstep() >>> nhru(1) >>> ft(1.0) >>> fhru(1.0) >>> lnk(ACKER) >>> measuringheightwindspeed(10.0) >>> lai(3.0) >>> wmax(300.0) >>> with model.add_radiationmodel_v1("meteo_glob_fao56") as meteo_glob_fao56: ... latitude(50.0) >>> with model.add_aetmodel_v1("evap_aet_morsim"): ... measuringheightwindspeed(2.0) ... model.add_radiationmodel_v1(meteo_glob_fao56)
To avoid name collisions,
save_controls()
prefixes the string submodel_ to the submodel name (which is identical to the submodel module’s name) to create the name of the variable that references the shared model’s instance:>>> with Open(): ... model.save_controls(filepath="otherdir/otherfile.py") ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~... otherdir/otherfile.py ----------------------------------------------------------------------------... # -*- coding: utf-8 -*- ... from hydpy.models.lland_knauf import * from hydpy.models import evap_aet_morsim from hydpy.models import meteo_glob_fao56 ... simulationstep("1d") parameterstep("1d") ... ft(1.0) ... measuringheightwindspeed(10.0) ... with model.add_aetmodel_v1(evap_aet_morsim): measuringheightwindspeed(2.0) ... with model.add_radiationmodel_v1(meteo_glob_fao56) as submodel_meteo_glob_fao56: latitude(50.0) ... model.add_radiationmodel_v1(submodel_meteo_glob_fao56) ... ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~...
- define_conditions(module: ModuleType | str | None = None) Generator[None, None, None] [source]¶
Allow defining the values of condition sequences in condition files conveniently.
define_conditions()
works similar to the “add_submodel” methods wrapped by instances of classSubmodelAdder
but is much simpler. In combination with the with statement, it makes the all relevant state and log sequences temporarily directly available:>>> from hydpy import pub >>> pub.timegrids = "2000-01-01", "2001-01-01", "6h" >>> from hydpy.models.lland_knauf import * >>> parameterstep() >>> nhru(2) >>> ft(10.0) >>> fhru(0.2, 0.8) >>> lnk(ACKER, MISCHW) >>> wmax(acker=100.0, mischw=200.0) >>> measuringheightwindspeed(10.0) >>> with model.add_aetmodel_v1("evap_aet_morsim"): ... pass >>> with model.aetmodel.define_conditions(): ... loggedwindspeed2m(1.0, 3.0, 2.0, 4.0) >>> loggedwindspeed2m Traceback (most recent call last): ... NameError: name 'loggedwindspeed2m' is not defined >>> model.aetmodel.sequences.logs.loggedwindspeed2m loggedwindspeed2m(1.0, 3.0, 2.0, 4.0)
One can pass the submodel’s module or name for documentation purposes:
>>> with model.aetmodel.define_conditions("evap_aet_morsim"): ... loggedwindspeed2m(4.0, 2.0, 3.0, 1.0) >>> loggedwindspeed2m Traceback (most recent call last): ... NameError: name 'loggedwindspeed2m' is not defined >>> model.aetmodel.sequences.logs.loggedwindspeed2m loggedwindspeed2m(4.0, 2.0, 3.0, 1.0)
For misleading input,
define_conditions()
raises the following error:>>> from hydpy.models import evap_aet_hbv96 >>> with model.aetmodel.define_conditions(evap_aet_hbv96): ... loggedwindspeed2m(1.0, 3.0, 2.0, 4.0) Traceback (most recent call last): ... TypeError: While trying to define the conditions of (sub)model `evap_aet_morsim`, the following error occurred: (Sub)model `evap_aet_morsim` is not of type `evap_aet_hbv96`. >>> loggedwindspeed2m Traceback (most recent call last): ... NameError: name 'loggedwindspeed2m' is not defined >>> model.aetmodel.sequences.logs.loggedwindspeed2m loggedwindspeed2m(4.0, 2.0, 3.0, 1.0)
- load_conditions(filename: str | None = None) None [source]¶
Read the initial conditions from a file and assign them to the respective
StateSequence
andLogSequence
objects.The documentation on method
load_conditions()
of classHydPy
explains how to read and write condition values for complete HydPy projects in the most convenient manner. However, using the underlying methodsload_conditions()
andsave_conditions()
directly offers the advantage of specifying alternative filenames. We demonstrate this by using the state sequenceSM
if the land_dill_asslElement
object of the HydPy-H-Lahn example project:>>> from hydpy.core.testtools import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() >>> dill_assl = hp.elements.land_dill_assl.model >>> dill_assl.sequences.states.sm sm(185.13164, 181.18755, 199.80432, 196.55888, 212.04018, 209.48859, 222.12115, 220.12671, 230.30756, 228.70779, 236.91943, 235.64427)
We work in the freshly created condition directory test:
>>> with TestIO(): ... pub.conditionmanager.currentdir = "test"
We set all soil moisture values to zero and write the updated values to file cold_start.py:
>>> dill_assl.sequences.states.sm(0.0) >>> with TestIO(): ... dill_assl.save_conditions("cold_start.py")
Trying to reload from the written file (after changing the soil moisture values again) without passing the file name fails due to the wrong assumption that the element’s name serves as the file name base:
>>> dill_assl.sequences.states.sm(100.0) >>> with TestIO(): ... dill_assl.load_conditions() Traceback (most recent call last): ... FileNotFoundError: While trying to load the initial conditions of element `land_dill_assl`, the following error occurred: [Errno 2] No such file or directory: '...land_dill_assl.py'
One does not need to explicitly state the file extensions (.py):
>>> with TestIO(): ... dill_assl.load_conditions("cold_start") >>> dill_assl.sequences.states.sm sm(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
Automatically determining the file name requires a proper reference to the related
Element
object:>>> del dill_assl.element >>> with TestIO(): ... dill_assl.save_conditions() Traceback (most recent call last): ... RuntimeError: While trying to save the actual conditions of element `?`, the following error occurred: To load or save the conditions of a model from or to a file, its filename must be known. This can be done, by passing filename to method `load_conditions` or `save_conditions` directly. But in complete HydPy applications, it is usally assumed to be consistent with the name of the element handling the model. Actually, neither a filename is given nor does the model know its master element.
The submodels selected in the HydPy-H-Lahn example project do not require any condition sequences. Hence, we replace the combination of
evap_aet_hbv96
andevap_pet_hbv96
with a plainevap_aet_morsim
instance, which relies on some log sequences:>>> with dill_assl.add_aetmodel_v1("evap_aet_morsim"): ... pass
The following code demonstrates that reading and writing of condition sequences also works for submodels:
>>> logs = dill_assl.aetmodel.sequences.logs >>> logs.loggedairtemperature = 20.0 >>> logs.loggedwindspeed2m = 2.0 >>> with TestIO(): ... dill_assl.save_conditions("submodel_conditions.py") >>> logs.loggedairtemperature = 10.0 >>> logs.loggedwindspeed2m = 1.0 >>> with TestIO(): ... dill_assl.load_conditions("submodel_conditions.py") >>> logs.loggedairtemperature loggedairtemperature(20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0) >>> logs.loggedwindspeed2m loggedwindspeed2m(2.0)
Method
save_conditions()
writes lines that use functioncontrolcheck()
. It, therefore, must know the control directory related to the written conditions, for which it relies on thecurrentdir
property of the control manager instance of modulepub
. So, make sure this property points to the correct directory. Otherwise, errors like the following might occur:>>> with TestIO(): ... del pub.controlmanager.currentdir ... pub.controlmanager.currentdir = "calib_1" ... pub.controlmanager.currentdir = "calib_2" ... pub.controlmanager.currentdir = None ... dill_assl.save_conditions("submodel_conditions.py") Traceback (most recent call last): ... RuntimeError: While trying to save the actual conditions of element `?`, the following error occurred: While trying to determine the related control file directory for configuring the `controlcheck` function, the following error occurred: The current working directory of the ControlManager object has not been defined manually and cannot be determined automatically: The default directory (default) is not among the available directories (calib_1 and calib_2).
- save_conditions(filename: str | None = None) None [source]¶
Query the actual conditions of the
StateSequence
andLogSequence
objects and write them into an initial condition file.See the documentation on method
load_conditions()
for further information.
- trim_conditions() None [source]¶
Call method
trim_conditions()
of the handledSequences
object.
- abstract simulate(idx: int) None [source]¶
Perform a simulation run over a single simulation time step.
- reset_reuseflags() None [source]¶
Reset all
REUSEMARKER
attributes of the current model instance and its submodels (usually at the beginning of a simulation step).When working in Cython mode, the standard model import overrides this generic Python version with a model-specific Cython version.
- load_data(idx: int) None [source]¶
Call method
load_data()
of the attribute sequences of the current model instance and its submodels.When working in Cython mode, the standard model import overrides this generic Python version with a model-specific Cython version.
- save_data(idx: int) None [source]¶
Call method
save_data()
of the attribute sequences of the current model instance and its submodels.When working in Cython mode, the standard model import overrides this generic Python version with a model-specific Cython version.
- update_inlets() None [source]¶
Call all methods defined as “INLET_METHODS” in the defined order.
>>> from hydpy.core.modeltools import AdHocModel, Method >>> class print_1(Method): ... @staticmethod ... def __call__(self): ... print(1) >>> class print_2(Method): ... @staticmethod ... def __call__(self): ... print(2) >>> class Test(AdHocModel): ... INLET_METHODS = print_1, print_2 >>> Test().update_inlets() 1 2
When working in Cython mode, the standard model import overrides this generic Python version with a model-specific Cython version.
- update_outlets() None [source]¶
Call all methods defined as “OUTLET_METHODS” in the defined order.
>>> from hydpy.core.modeltools import AdHocModel, Method >>> class print_1(Method): ... @staticmethod ... def __call__(self): ... print(1) >>> class print_2(Method): ... @staticmethod ... def __call__(self): ... print(2) >>> class Test(AdHocModel): ... OUTLET_METHODS = print_1, print_2 >>> Test().update_outlets() 1 2
When working in Cython mode, the standard model import overrides this generic Python version with a model-specific Cython version.
- update_receivers(idx: int) None [source]¶
Call all methods defined as “RECEIVER_METHODS” in the defined order.
>>> from hydpy.core.modeltools import AdHocModel, Method >>> class print_1(Method): ... @staticmethod ... def __call__(self): ... print(test.idx_sim+1) >>> class print_2(Method): ... @staticmethod ... def __call__(self): ... print(test.idx_sim+2) >>> class Test(AdHocModel): ... RECEIVER_METHODS = print_1, print_2 >>> test = Test() >>> test.update_receivers(1) 2 3
When working in Cython mode, the standard model import overrides this generic Python version with a model-specific Cython version.
- update_senders(idx: int) None [source]¶
Call all methods defined as “SENDER_METHODS” in the defined order.
>>> from hydpy.core.modeltools import AdHocModel, Method >>> class print_1(Method): ... @staticmethod ... def __call__(self): ... print(test.idx_sim+1) >>> class print_2(Method): ... @staticmethod ... def __call__(self): ... print(test.idx_sim+2) >>> class Test(AdHocModel): ... SENDER_METHODS = print_1, print_2 >>> test = Test() >>> test.update_senders(1) 2 3
When working in Cython mode, the standard model import overrides this generic Python version with a model-specific Cython version.
- new2old() None [source]¶
Call method
new2old()
of subattribute sequences.states.When working in Cython mode, the standard model import overrides this generic Python version with a model-specific Cython version.
- update_outputs() None [source]¶
Call method
update_outputs()
of attributesequences
.When working in Cython mode, the standard model import overrides this generic Python version with a model-specific Cython version.
- classmethod get_methods(skip: tuple[Literal['RECEIVER_METHODS', 'INLET_METHODS', 'RUN_METHODS', 'PART_ODE_METHODS', 'FULL_ODE_METHODS', 'ADD_METHODS', 'INTERFACE_METHODS', 'OUTLET_METHODS', 'SENDER_METHODS'], ...] = ()) Iterator[type[Method]] [source]¶
Convenience method for iterating through all methods selected by a
Model
subclass.>>> from hydpy.models import hland_96, ga_garto_submodel1 >>> for method in hland_96.Model.get_methods(): ... print(method.__name__) Calc_TC_V1 ... Pass_Q_V1
>>> for method in ga_garto_submodel1.Model.get_methods(): ... print(method.__name__) Set_InitialSurfaceWater_V1 ... Get_SoilWaterContent_V1 Return_RelativeMoisture_V1 ... Withdraw_AllBins_V1
One can skip all methods that belong to specific groups:
>>> for method in hland_96.Model.get_methods(skip=("OUTLET_METHODS",)): ... print(method.__name__) Calc_TC_V1 ... Calc_OutRC_RConcModel_V1
>>> for method in hland_96.Model.get_methods(("OUTLET_METHODS", "ADD_METHODS")): ... print(method.__name__) Calc_TC_V1 ... Calc_QT_V1
Note that function
get_methods()
returns the “raw”Method
objects instead of the modified Python or Cython functions used for performing calculations.
- find_submodels(*, include_subsubmodels: bool = True, include_mainmodel: bool = False, include_sidemodels: bool = False, include_optional: bool = False, include_feedbacks: bool = False, aggregate_vectors: bool = False, repeat_sharedmodels: bool = False, position: Literal[0, -1] | None = None) dict[str, Model] | dict[str, Model | None] [source]¶
Find the (sub)submodel instances of the current main model instance.
Method
find_submodels()
returns an empty dictionary by default if no submodel is available:>>> from hydpy import prepare_model >>> model = prepare_model("lland_knauf") >>> model.find_submodels() {}
The include_mainmodel parameter allows the addition of the main model:
>>> model.find_submodels(include_mainmodel=True) {'model': lland_knauf}
The include_optional parameter allows considering prepared and unprepared submodels:
>>> model.find_submodels(include_optional=True) {'model.aetmodel': None, 'model.radiationmodel': None, 'model.soilmodel': None} >>> model.aetmodel = prepare_model("evap_aet_minhas") >>> model.aetmodel.petmodel = prepare_model("evap_pet_mlc") >>> model.aetmodel.petmodel.retmodel = prepare_model("evap_ret_tw2002") >>> from pprint import pprint >>> pprint(model.find_submodels(include_optional=True)) {'model.aetmodel': evap_aet_minhas..., 'model.aetmodel.intercmodel': None, 'model.aetmodel.petmodel': evap_pet_mlc..., 'model.aetmodel.petmodel.retmodel': evap_ret_tw2002, 'model.aetmodel.petmodel.retmodel.radiationmodel': None, 'model.aetmodel.petmodel.retmodel.tempmodel': None, 'model.aetmodel.soilwatermodel': None, 'model.radiationmodel': None, 'model.soilmodel': None}
By default,
find_submodels()
does not return an additional entry when a main model serves as a sub-submodel:>>> model.aetmodel.soilwatermodel = model >>> model.aetmodel.soilwatermodel_is_mainmodel = True >>> pprint(model.find_submodels(include_optional=True)) {'model.aetmodel': evap_aet_minhas..., 'model.aetmodel.intercmodel': None, 'model.aetmodel.petmodel': evap_pet_mlc..., 'model.aetmodel.petmodel.retmodel': evap_ret_tw2002, 'model.aetmodel.petmodel.retmodel.radiationmodel': None, 'model.aetmodel.petmodel.retmodel.tempmodel': None, 'model.radiationmodel': None, 'model.soilmodel': None}
Use the include_feedbacks parameter to make such feedback connections transparent:
>>> pprint(model.find_submodels(include_mainmodel=True, ... include_optional=True, include_feedbacks=True)) {'model': lland_knauf..., 'model.aetmodel': evap_aet_minhas..., 'model.aetmodel.intercmodel': None, 'model.aetmodel.petmodel': evap_pet_mlc..., 'model.aetmodel.petmodel.retmodel': evap_ret_tw2002, 'model.aetmodel.petmodel.retmodel.radiationmodel': None, 'model.aetmodel.petmodel.retmodel.tempmodel': None, 'model.aetmodel.soilwatermodel': lland_knauf..., 'model.radiationmodel': None, 'model.soilmodel': None}
find_submodels()
includes only one reference to shared model instances by default:>>> model.radiationmodel = prepare_model("meteo_glob_fao56") >>> model.aetmodel = prepare_model("evap_aet_morsim") >>> model.aetmodel.radiationmodel = model.radiationmodel >>> pprint(model.find_submodels(include_optional=True)) {'model.aetmodel': evap_aet_morsim..., 'model.aetmodel.intercmodel': None, 'model.aetmodel.snowalbedomodel': None, 'model.aetmodel.snowcovermodel': None, 'model.aetmodel.snowycanopymodel': None, 'model.aetmodel.soilwatermodel': None, 'model.aetmodel.tempmodel': None, 'model.radiationmodel': meteo_glob_fao56, 'model.soilmodel': None}
Use the repeat_sharedmodels parameter to change this behaviour:
>>> pprint(model.find_submodels( ... repeat_sharedmodels=True, include_optional=True)) {'model.aetmodel': evap_aet_morsim..., 'model.aetmodel.intercmodel': None, 'model.aetmodel.radiationmodel': meteo_glob_fao56, 'model.aetmodel.snowalbedomodel': None, 'model.aetmodel.snowcovermodel': None, 'model.aetmodel.snowycanopymodel': None, 'model.aetmodel.soilwatermodel': None, 'model.aetmodel.tempmodel': None, 'model.radiationmodel': meteo_glob_fao56, 'model.soilmodel': None}
All previous examples dealt with scalar submodel references handled by
SubmodelProperty
. Now we will focus on vectors of submodel references handled bySubmodelsProperty
and takesw1d_channel
as an example:>>> channel = prepare_model("sw1d_channel") >>> channel.parameters.control.nmbsegments(2)
Again, method
find_submodels()
returns by default an empty dictionary if no submodel is available:>>> channel.find_submodels() {}
The include_optional parameter works as shown for the scalar case. But for scalar cases, the names contain an additional suffix to indicate the position of the respective submodel:
>>> pprint(channel.find_submodels(include_optional=True)) {'model.routingmodels_0': None, 'model.routingmodels_1': None, 'model.routingmodels_2': None, 'model.storagemodels_0': None, 'model.storagemodels_1': None}
We now add some possible submodels to the
sw1d_channel
main model:>>> with channel.add_routingmodel_v1("sw1d_q_in", position=0, update=False): ... pass >>> with channel.add_storagemodel_v1("sw1d_storage", position=0, update=False): ... pass >>> with channel.add_routingmodel_v2("sw1d_lias", position=1, update=False): ... pass >>> with channel.add_storagemodel_v1("sw1d_storage", position=1, update=False): ... pass >>> with channel.add_routingmodel_v3("sw1d_weir_out", position=2, update=False): ... pass
Method
find_submodels()
associates them with the correct positions:>>> pprint(channel.find_submodels()) {'model.routingmodels_0': sw1d_q_in, 'model.routingmodels_1': sw1d_lias, 'model.routingmodels_2': sw1d_weir_out, 'model.storagemodels_0': sw1d_storage, 'model.storagemodels_1': sw1d_storage}
One can use the aggregate_vectors parameter to gain a better overview. Then,
find_submodels()
reports only the names of the respectiveSubmodelsProperty
instances with a suffixed wildcard to distinguish them fromSubmodelProperty
instances:>>> channel.find_submodels(aggregate_vectors=True) {'model.routingmodels_*': None, 'model.storagemodels_*': None}
Another option is to include side models. However, this does not work in combination with including sub-submodels and thus cannot give further insight into the configuration of a
sw1d_channel
model:>>> pprint(channel.find_submodels(include_sidemodels=True)) Traceback (most recent call last): ... ValueError: Including sub-submodels and side-models leads to ambiguous results.
So, one needs to apply it to the respective submodels directly:
>>> pprint(channel.storagemodels[0].find_submodels( ... include_subsubmodels=False, include_sidemodels=True)) {'model.routingmodelsdownstream_0': sw1d_lias, 'model.routingmodelsupstream_0': sw1d_q_in}
>>> pprint(channel.routingmodels[1].find_submodels( ... include_subsubmodels=False, include_sidemodels=True)) {'model.routingmodelsdownstream_0': sw1d_weir_out, 'model.routingmodelsupstream_0': sw1d_q_in, 'model.storagemodeldownstream': sw1d_storage, 'model.storagemodelupstream': sw1d_storage}
When dealing with submodel arrays handled by
SubmodelsProperty
instances, one might be interested in only querying the first or the last model, which is supported by the position parameter:>>> pprint(channel.find_submodels(position=0)) {'model.routingmodels_0': sw1d_q_in, 'model.storagemodels_0': sw1d_storage} >>> pprint(channel.find_submodels(position=-1)) {'model.routingmodels_2': sw1d_weir_out, 'model.storagemodels_1': sw1d_storage} >>> pprint(channel.find_submodels(position=1)) Traceback (most recent call last): ... ValueError: The `position` argument requires the integer value `0´ or `-1`, but the value `1` of type `int` is given.
- query_submodels(name: ModuleType | str, /) list[Model] [source]¶
Use
find_submodels()
to query all (sub)models of the given type.>>> from hydpy import prepare_model >>> model = prepare_model("lland_knauf") >>> model.query_submodels("meteo_glob_fao56") []
>>> model.radiationmodel = prepare_model("meteo_glob_fao56") >>> model.query_submodels("meteo_glob_fao56") [meteo_glob_fao56]
>>> model.aetmodel = prepare_model("evap_aet_morsim") >>> model.aetmodel.radiationmodel = model.radiationmodel >>> model.query_submodels("meteo_glob_fao56") [meteo_glob_fao56]
>>> from hydpy.models import meteo_glob_fao56 >>> model.aetmodel.radiationmodel = prepare_model(meteo_glob_fao56) >>> model.query_submodels(meteo_glob_fao56) [meteo_glob_fao56, meteo_glob_fao56]
- update_parameters(ignore_errors: bool = False) None [source]¶
Use the control parameter values of the current model for updating its derived parameters and the control and derived parameters of all its submodels.
We use the combination of
hland_96
,evap_aet_hbv96
, andevap_pet_hbv96
used by the HydPy-H-Lahn project for modelling the Dill catchment as an example:>>> from hydpy.core.testtools import prepare_full_example_2 >>> hp = prepare_full_example_2()[0] >>> model = hp.elements.land_dill_assl.model
First, all zones of the Dill catchment are either of type
FIELD
orFOREST
:>>> model.parameters.control.zonetype zonetype(FIELD, FOREST, FIELD, FOREST, FIELD, FOREST, FIELD, FOREST, FIELD, FOREST, FIELD, FOREST)
Hence, the
Soil
parameter ofevap_aet_hbv96
must beTrue
for the entire basin, as both zone types possess a soil module which requires soil evapotranspiration estimates:>>> model.aetmodel.parameters.control.soil soil(True)
Second,
hland_96
requires definitions for the zones’ altitude (ZoneZ
) and determines the average basin altitude (Z
) automatically:>>> model.parameters.control.zonez zonez(2.0, 2.0, 3.0, 3.0, 4.0, 4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0) >>> model.parameters.derived.z z(4.205345)
evap_aet_hbv96
handles its altitude data similarly but relies on the unit 1 m instead of 100 m:>>> model.aetmodel.petmodel.parameters.control.hrualtitude hrualtitude(200.0, 200.0, 300.0, 300.0, 400.0, 400.0, 500.0, 500.0, 600.0, 600.0, 700.0, 700.0) >>> model.aetmodel.petmodel.parameters.derived.altitude altitude(420.53445)
We now set the first zone to type
ILAKE
and the altitude of all zones to 400 m:>>> from hydpy.models.hland_96 import ILAKE >>> model.parameters.control.zonetype[0] = ILAKE >>> model.parameters.control.zonez(4.0)
update_parameters()
uses the appropriate interface methods to transfer the updated control parameter values from the main model to all its submodels. So, parameterSoil
parameter ofevap_aet_hbv96
becomes aware of the introduced internal lake zone, which does not include a soil module and hence needs no soil evapotranspiration estimates:>>> model.update_parameters() >>> model.aetmodel.parameters.control.soil soil(field=True, forest=True, ilake=False)
Additionally,
update_parameters()
uses methodupdate()
of classParameters
for updating the derived parametersZ
of thehland_96
main model andAltitude
of theevap_pet_hbv96
submodel:>>> model.parameters.derived.z z(4.0) >>> model.aetmodel.petmodel.parameters.control.hrualtitude hrualtitude(400.0) >>> model.aetmodel.petmodel.parameters.derived.altitude altitude(400.0)
- property conditions: dict[str, dict[str, dict[str, float | ndarray[Any, dtype[float64]]]]]¶
A nested dictionary that contains the values of all condition sequences of a model and its submodels.
See the documentation on property
conditions
for further information.
- property couple_models: ModelCoupler | None¶
If available, return a function object for coupling models to a composite model suitable at least for the actual model subclass (see method
unite_collectives()
).
- class hydpy.core.modeltools.RunModel[source]¶
Bases:
Model
Base class for
AdHocModel
andSegmentModel
that introduces so-called “run methods”, which need to be executed in the order of their positions in theRUN_METHODS
tuple.- METHOD_GROUPS: ClassVar[tuple[str, ...]] = ('RECEIVER_METHODS', 'INLET_METHODS', 'RUN_METHODS', 'ADD_METHODS', 'OUTLET_METHODS', 'SENDER_METHODS')¶
- simulate(idx: int) None [source]¶
Perform a simulation run over a single simulation time step.
The required argument idx corresponds to property idx_sim (see the main documentation on class
Model
).You can integrate method
simulate()
into your workflows for tailor-made simulation runs. Methodsimulate()
is complete enough to allow for consecutive calls. However, note that it does neither callsave_data()
,update_receivers()
, norupdate_senders()
. Also, one would have to reset the related node sequences, as done in the following example:>>> from hydpy.core.testtools import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() >>> model = hp.elements.land_dill_assl.model >>> for idx in range(4): ... model.simulate(idx) ... print(hp.nodes.dill_assl.sequences.sim) ... hp.nodes.dill_assl.sequences.sim = 0.0 sim(11.757526) sim(8.865079) sim(7.101815) sim(5.994195) >>> hp.nodes.dill_assl.sequences.sim.series InfoArray([nan, nan, nan, nan])
The results above are identical to those of method
simulate()
of classHydPy
, which is the standard method to perform simulation runs (except that methodsimulate()
of classHydPy
also performs the steps neglected by methodsimulate()
of classModel
mentioned above):>>> from hydpy import round_ >>> hp.reset_conditions() >>> hp.simulate() >>> round_(hp.nodes.dill_assl.sequences.sim.series) 11.757526, 8.865079, 7.101815, 5.994195
When working in Cython mode, the standard model import overrides this generic Python version with a model-specific Cython version.
- class hydpy.core.modeltools.AdHocModel[source]¶
Bases:
RunModel
Base class for models solving the underlying differential equations in an “ad hoc manner”.
“Ad hoc” stands for the classical approaches in hydrology to calculate individual fluxes separately (often sequentially) and without error control (Clark and Kavetski, 2010).
- run() None [source]¶
Call all methods defined as “run methods” in the defined order.
>>> from hydpy.core.modeltools import AdHocModel, Method >>> class print_1(Method): ... @staticmethod ... def __call__(self): ... print(1) >>> class print_2(Method): ... @staticmethod ... def __call__(self): ... print(2) >>> class Test(AdHocModel): ... RUN_METHODS = print_1, print_2 >>> Test().run() 1 2
When working in Cython mode, the standard model import overrides this generic Python version with a model-specific Cython version.
- class hydpy.core.modeltools.SegmentModel[source]¶
Bases:
RunModel
Base class for (routing) models that solve the underlying differential equations “segment-wise”.
“segment-wise” means that
SegmentModel
first runs the “run methods” for the first segment (by settingidx_segment
to zero), then for the second segment (by settingidx_segment
to one), and so on. Therefore, it requires the concrete model subclass to provide a control parameter named “NmbSegments”. Additionally, it requires the concrete model to implement a solver parameter named “NmbRuns” that defines how many times the “run methods” need to be (repeatedly) executed for each segment. Seemusk_classic
andmusk_mct
as examples.- idx_segment¶
The segment index.
- idx_run¶
The run index.
- run() None [source]¶
Call all methods defined as “run methods” “segment-wise”.
When working in Cython mode, the standard model import overrides this generic Python version with a model-specific Cython version.
- run_segments(method: Method) None [source]¶
Run the given methods for all segments.
Method
run_segments()
is mainly thought for testing purposes. See the documentation on methodCalc_Discharge_V1
on how to apply it.
- class hydpy.core.modeltools.SubstepModel[source]¶
Bases:
RunModel
Base class for (routing) models that solve the underlying differential equations “substep-wise”.
“substep-wise” means method
run()
repeatedly calls all “run methods” in the usual order within each simulation step until thetimeleft
attribute is not larger than zero anymore. The concrete model subclass is up to reducetimeleft
. This mechanism allows the concrete model to adjust the internal calculation time step depending on its current accuracy and stability requirements.- cymodel: CySubstepModelProtocol | None¶
- class hydpy.core.modeltools.SolverModel[source]¶
Bases:
Model
Base class for hydrological models, which solve ordinary differential equations with numerical integration algorithms.
- class hydpy.core.modeltools.NumConstsELS[source]¶
Bases:
object
Configuration options for using the “Explicit Lobatto Sequence” implemented by class
ELSModel
.You can change the following solver options at your own risk.
>>> from hydpy.core.modeltools import NumConstsELS >>> consts = NumConstsELS()
The maximum number of Runge Kutta submethods to be applied (the higher, the better the theoretical accuracy, but also the worse the time spent unsuccessful when the theory does not apply):
>>> consts.nmb_methods 10
The number of entries to handle the stages of the highest order method (must agree with the maximum number of methods):
>>> consts.nmb_stages 11
The maximum increase of the integration step size in case of success:
>>> consts.dt_increase 2.0
The maximum decrease of the integration step size in case of failure:
>>> consts.dt_decrease 10.0
The Runge Kutta coefficients, one matrix for each submethod:
>>> consts.a_coefs.shape (11, 12, 11)
- class hydpy.core.modeltools.NumVarsELS[source]¶
Bases:
object
Intermediate results of the “Explicit Lobatto Sequence” implemented by class
ELSModel
.Class
NumVarsELS
should be of relevance for model developers, as it helps to evaluate how efficient newly implemented models are solved (see the documentation on methodsolve()
of classELSModel
as an example).
- class hydpy.core.modeltools.ELSModel[source]¶
Bases:
SolverModel
Base class for hydrological models using the “Explicit Lobatto Sequence” for solving ordinary differential equations.
The “Explicit Lobatto Sequence” is a variable order Runge Kutta method combining different Lobatto methods. Its main idea is to first calculate a solution with a lower order method, then use these results to apply the next higher-order method, and to compare both results. If they are close enough, the latter results are accepted. If not, the next higher-order method is applied (or, if no higher-order method is available, the step size is decreased, and the algorithm restarts with the method of the lowest order). So far, a thorough description of the algorithm is available in German only (Tyralla, 2016).
Note the strengths and weaknesses of class
ELSModel
discussed in the documentation on methodsolve()
. Model developers should not derive from classELSModel
when trying to implement models with a high potential for stiff parameterisations. Discontinuities should be regularised, for example, by the “smoothing functions” provided by modulesmoothtools
. Model users should be careful not to define two small smoothing factors, to avoid needlessly long simulation times.- METHOD_GROUPS: ClassVar[tuple[str, ...]] = ('RECEIVER_METHODS', 'INLET_METHODS', 'PART_ODE_METHODS', 'FULL_ODE_METHODS', 'ADD_METHODS', 'OUTLET_METHODS', 'SENDER_METHODS')¶
- numconsts: NumConstsELS¶
- numvars: NumVarsELS¶
- simulate(idx: int) None [source]¶
Similar to method
simulate()
of classAdHocModel
but calls methodsolve()
instead ofrun()
.When working in Cython mode, the standard model import overrides this generic Python version with a model-specific Cython version.
- solve() None [source]¶
Solve all FULL_ODE_METHODS in parallel.
Implementing numerical integration algorithms that (hopefully) always work well in practice is a tricky task. The following exhaustive examples show how well our “Explicit Lobatto Sequence” algorithm performs for the numerical test models
test_stiff0d
andtest_discontinous
. We hope to cover all possible corner cases. Please tell us if you find one we missed.First, we set the value of parameter
K
to zero, resulting in no changes at all and thus defining the simplest test case possible:>>> from hydpy.models.test_stiff0d import * >>> parameterstep() >>> k(0.0)
Second, we assign values to the solver parameters
AbsErrorMax
,RelDTMin
, andRelDTMax
to specify the required numerical accuracy and the smallest and largest internal integration step size allowed:>>> solver.abserrormax(0.1) >>> solver.reldtmin(0.001) >>> solver.reldtmax(1.0)
Additionally, we set
RelErrorMax
tonan
, which disables taking relative errors into account:>>> solver.relerrormax(nan)
Calling method
solve()
correctly calculates zero discharge (Q
) and thus does not change the water storage (S
):>>> states.s(1.0) >>> model.numvars.nmb_calls = 0 >>> model.solve() >>> states.s s(1.0) >>> fluxes.q q(0.0)
The achieve the above result,
ELSModel
requires two function calls, one for the initial guess (using the Explicit Euler Method) and the other one (extending the Explicit Euler method to the Explicit Heun method) to confirm the first guess meets the required accuracy:>>> model.numvars.idx_method 2 >>> model.numvars.dt 1.0 >>> model.numvars.nmb_calls 2
With moderate changes due to setting the value of parameter
K
to 0.1, two method calls are still sufficient:>>> k(0.1) >>> states.s(1.0) >>> model.numvars.nmb_calls = 0 >>> model.solve() >>> states.s s(0.905) >>> fluxes.q q(0.095) >>> model.numvars.idx_method 2 >>> model.numvars.nmb_calls 2
Calculating the analytical solution shows
ELSModel
did not exceed the given tolerance value:>>> import numpy >>> from hydpy import round_ >>> round_(numpy.exp(-k)) 0.904837
After decreasing the allowed error by one order of magnitude,
ELSModel
requires four method calls (again, one for the first order and one for the second-order method, and two additional calls for the third-order method):>>> solver.abserrormax(0.001) >>> states.s(1.0) >>> model.numvars.nmb_calls = 0 >>> model.solve() >>> states.s s(0.904833) >>> fluxes.q q(0.095167) >>> model.numvars.idx_method 3 >>> model.numvars.nmb_calls 4
After decreasing
AbsErrorMax
by ten again,ELSModel
needs one further higher-order method, which requires three additional calls, making a sum of seven:>>> solver.abserrormax(0.0001) >>> states.s(1.0) >>> model.numvars.nmb_calls = 0 >>> model.solve() >>> states.s s(0.904837) >>> fluxes.q q(0.095163) >>> model.numvars.idx_method 4 >>> model.numvars.nmb_calls 7
ELSModel
achieves even a very extreme numerical precision (just for testing, way beyond hydrological requirements) in one single step but now requires 29 method calls:>>> solver.abserrormax(1e-12) >>> states.s(1.0) >>> model.numvars.nmb_calls = 0 >>> model.solve() >>> states.s s(0.904837) >>> fluxes.q q(0.095163) >>> model.numvars.dt 1.0 >>> model.numvars.idx_method 8 >>> model.numvars.nmb_calls 29
With a more dynamical parameterisation, where the storage decreases by about 40 % per time step,
ELSModel
needs seven method calls to meet a “normal” error tolerance:>>> solver.abserrormax(0.01) >>> k(0.5) >>> states.s(1.0) >>> model.numvars.nmb_calls = 0 >>> model.solve() >>> states.s s(0.606771) >>> fluxes.q q(0.393229) >>> model.numvars.idx_method 4 >>> model.numvars.nmb_calls 7 >>> round_(numpy.exp(-k)) 0.606531
Being an explicit integration method, the “Explicit Lobatto Sequence” can be inefficient for solving stiff initial value problems. Setting
K
to 2.0 forcesELSModel
to solve the problem in two substeps, requiring a total of 22 method calls:>>> k(2.0) >>> round_(numpy.exp(-k)) 0.135335 >>> states.s(1.0) >>> model.numvars.nmb_calls = 0 >>> model.solve() >>> states.s s(0.134658) >>> fluxes.q q(0.865342) >>> round_(model.numvars.dt) 0.3 >>> model.numvars.nmb_calls 22
Increasing the stiffness of the initial value problem further can increase computation times rapidly:
>>> k(4.0) >>> round_(numpy.exp(-k)) 0.018316 >>> states.s(1.0) >>> model.numvars.nmb_calls = 0 >>> model.solve() >>> states.s s(0.019774) >>> fluxes.q q(0.980226) >>> round_(model.numvars.dt) 0.3 >>> model.numvars.nmb_calls 44
If we prevent
ELSModel
from compensatingf or its problems by disallowing it to reduce its integration step size, it does not achieve satisfying results:>>> solver.reldtmin(1.0) >>> states.s(1.0) >>> model.numvars.nmb_calls = 0 >>> model.solve() >>> states.s s(0.09672) >>> fluxes.q q(0.90328) >>> round_(model.numvars.dt) 1.0 >>> model.numvars.nmb_calls 46
You can restrict the allowed maximum integration step size, which can help to prevent from loosing to much performance due to trying to solve too stiff problems, repeatedly:
>>> solver.reldtmin(0.001) >>> solver.reldtmax(0.25) >>> states.s(1.0) >>> model.numvars.nmb_calls = 0 >>> model.solve() >>> states.s s(0.016806) >>> fluxes.q q(0.983194) >>> round_(model.numvars.dt) 0.25 >>> model.numvars.nmb_calls 33
Alternatively, you can restrict the available number of Lobatto methods. Using two methods only is an inefficient choice for the given initial value problem but at least solves it with the required accuracy:
>>> solver.reldtmax(1.0) >>> model.numconsts.nmb_methods = 2 >>> states.s(1.0) >>> model.numvars.nmb_calls = 0 >>> model.solve() >>> states.s s(0.020284) >>> fluxes.q q(0.979716) >>> round_(model.numvars.dt) 0.156698 >>> model.numvars.nmb_calls 74
In the above examples, we control numerical accuracies based on absolute error estimates only via parameter
AbsErrorMax
. After assigning an actual value to parameterRelErrorMax
,ELSModel
also takes relative errors into account. We modify some of the above examples to show how this works.Generally, it is sufficient to meet one of both criteria. If we repeat the second example with a relaxed absolute but a strict relative tolerance, we reproduce the original result due to our absolute criteria being the relevant one:
>>> solver.abserrormax(0.1) >>> solver.relerrormax(0.000001) >>> k(0.1) >>> states.s(1.0) >>> model.solve() >>> states.s s(0.905) >>> fluxes.q q(0.095)
The same holds for the opposite case of a strict absolute but a relaxed relative tolerance:
>>> solver.abserrormax(0.000001) >>> solver.relerrormax(0.1) >>> k(0.1) >>> states.s(1.0) >>> model.solve() >>> states.s s(0.905) >>> fluxes.q q(0.095)
Reiterating the “more dynamical parameterisation” example results in slightly different but also correct results:
>>> k(0.5) >>> states.s(1.0) >>> model.solve() >>> states.s s(0.607196) >>> fluxes.q q(0.392804)
Reiterating the stiffest example with a relative instead of an absolute error tolerance of 0.1 achieves higher accuracy, as to be expected due to the value of
S
being far below 1.0 for some time:>>> k(4.0) >>> states.s(1.0) >>> model.solve() >>> states.s s(0.0185) >>> fluxes.q q(0.9815)
Besides its weaknesses with stiff problems,
ELSModel
cannot solve discontinuous problems well. We use thetest_stiff0d
example model to demonstrate howELSModel
behaves when confronted with such a problem.>>> from hydpy import reverse_model_wildcard_import >>> reverse_model_wildcard_import() >>> from hydpy.models.test_discontinous import * >>> parameterstep()
Everything works fine as long as the discontinuity does not affect the considered simulation step:
>>> k(0.5) >>> solver.abserrormax(0.01) >>> solver.reldtmin(0.001) >>> solver.reldtmax(1.0) >>> solver.relerrormax(nan) >>> states.s(1.0) >>> model.numvars.nmb_calls = 0 >>> model.solve() >>> states.s s(0.5) >>> fluxes.q q(0.5) >>> model.numvars.idx_method 2 >>> model.numvars.dt 1.0 >>> model.numvars.nmb_calls 2
The occurrence of a discontinuity within the simulation step often increases computation times more than a stiff parameterisation:
>>> k(2.0) >>> states.s(1.0) >>> model.numvars.nmb_calls = 0 >>> model.solve() >>> states.s s(-0.006827) >>> fluxes.q q(1.006827) >>> model.numvars.nmb_calls 58
>>> k(2.1) >>> states.s(1.0) >>> model.numvars.nmb_calls = 0 >>> model.solve() >>> states.s s(-0.00072) >>> fluxes.q q(1.00072) >>> model.numvars.nmb_calls 50
When working in Cython mode, the standard model import overrides this generic Python version with a model-specific Cython version.
- calculate_single_terms() None [source]¶
Apply all methods stored in the PART_ODE_METHODS tuple.
>>> from hydpy.models.test_stiff0d import * >>> parameterstep() >>> k(0.25) >>> states.s = 1.0 >>> model.calculate_single_terms() >>> fluxes.q q(0.25)
- calculate_full_terms() None [source]¶
Apply all methods stored in the FULL_ODE_METHODS tuple.
>>> from hydpy.models.test_stiff0d import * >>> parameterstep() >>> k(0.25) >>> states.s.old = 1.0 >>> fluxes.q = 0.25 >>> model.calculate_full_terms() >>> states.s.old 1.0 >>> states.s.new 0.75
- get_point_states() None [source]¶
Load the states corresponding to the actual stage.
>>> from hydpy import round_ >>> from hydpy.models.test_stiff0d import * >>> parameterstep() >>> states.s.old = 2.0 >>> states.s.new = 2.0 >>> model.numvars.idx_stage = 2 >>> points = numpy.asarray(states.fastaccess._s_points) >>> points[:4] = 0.0, 0.0, 1.0, 0.0 >>> model.get_point_states() >>> round_(states.s.old) 2.0 >>> round_(states.s.new) 1.0
>>> from hydpy import reverse_model_wildcard_import, print_vector >>> reverse_model_wildcard_import() >>> from hydpy.models.test_stiff1d import * >>> parameterstep() >>> n(2) >>> states.sv.old = 3.0, 3.0 >>> states.sv.new = 3.0, 3.0 >>> model.numvars.idx_stage = 2 >>> points = numpy.asarray(states.fastaccess._sv_points) >>> points[:4, 0] = 0.0, 0.0, 1.0, 0.0 >>> points[:4, 1] = 0.0, 0.0, 2.0, 0.0 >>> model.get_point_states() >>> print_vector(states.sv.old) 3.0, 3.0 >>> print_vector(states.sv.new) 1.0, 2.0
- set_point_states() None [source]¶
Save the states corresponding to the actual stage.
>>> from hydpy import print_vector >>> from hydpy.models.test_stiff0d import * >>> parameterstep() >>> states.s.old = 2.0 >>> states.s.new = 1.0 >>> model.numvars.idx_stage = 2 >>> points = numpy.asarray(states.fastaccess._s_points) >>> points[:] = 0. >>> model.set_point_states() >>> print_vector(points[:4]) 0.0, 0.0, 1.0, 0.0
>>> from hydpy import reverse_model_wildcard_import >>> reverse_model_wildcard_import() >>> from hydpy.models.test_stiff1d import * >>> parameterstep() >>> n(2) >>> states.sv.old = 3.0, 3.0 >>> states.sv.new = 1.0, 2.0 >>> model.numvars.idx_stage = 2 >>> points = numpy.asarray(states.fastaccess._sv_points) >>> points[:] = 0. >>> model.set_point_states() >>> print_vector(points[:4, 0]) 0.0, 0.0, 1.0, 0.0 >>> print_vector(points[:4, 1]) 0.0, 0.0, 2.0, 0.0
- set_result_states() None [source]¶
Save the final states of the actual method.
>>> from hydpy import print_vector >>> from hydpy.models.test_stiff0d import * >>> parameterstep() >>> states.s.old = 2.0 >>> states.s.new = 1.0 >>> model.numvars.idx_method = 2 >>> results = numpy.asarray(states.fastaccess._s_results) >>> results[:] = 0.0 >>> model.set_result_states() >>> print_vector(results[:4]) 0.0, 0.0, 1.0, 0.0
>>> from hydpy import reverse_model_wildcard_import >>> reverse_model_wildcard_import() >>> from hydpy.models.test_stiff1d import * >>> parameterstep() >>> n(2) >>> states.sv.old = 3.0, 3.0 >>> states.sv.new = 1.0, 2.0 >>> model.numvars.idx_method = 2 >>> results = numpy.asarray(states.fastaccess._sv_results) >>> results[:] = 0.0 >>> model.set_result_states() >>> print_vector(results[:4, 0]) 0.0, 0.0, 1.0, 0.0 >>> print_vector(results[:4, 1]) 0.0, 0.0, 2.0, 0.0
- get_sum_fluxes() None [source]¶
Get the sum of the fluxes calculated so far.
>>> from hydpy.models.test_stiff0d import * >>> parameterstep() >>> fluxes.q = 0.0 >>> fluxes.fastaccess._q_sum = 1.0 >>> model.get_sum_fluxes() >>> fluxes.q q(1.0)
>>> from hydpy import reverse_model_wildcard_import, print_vector >>> reverse_model_wildcard_import() >>> from hydpy.models.test_stiff1d import * >>> parameterstep() >>> n(2) >>> fluxes.qv = 0.0, 0.0 >>> numpy.asarray(fluxes.fastaccess._qv_sum)[:] = 1.0, 2.0 >>> model.get_sum_fluxes() >>> fluxes.qv qv(1.0, 2.0)
- set_point_fluxes() None [source]¶
Save the fluxes corresponding to the actual stage.
>>> from hydpy import print_vector >>> from hydpy.models.test_stiff0d import * >>> parameterstep() >>> fluxes.q = 1.0 >>> model.numvars.idx_stage = 2 >>> points = numpy.asarray(fluxes.fastaccess._q_points) >>> points[:] = 0.0 >>> model.set_point_fluxes() >>> print_vector(points[:4]) 0.0, 0.0, 1.0, 0.0
>>> from hydpy import reverse_model_wildcard_import >>> reverse_model_wildcard_import() >>> from hydpy.models.test_stiff1d import * >>> parameterstep() >>> n(2) >>> fluxes.qv = 1.0, 2.0 >>> model.numvars.idx_stage = 2 >>> points = numpy.asarray(fluxes.fastaccess._qv_points) >>> points[:] = 0.0 >>> model.set_point_fluxes() >>> print_vector(points[:4, 0]) 0.0, 0.0, 1.0, 0.0 >>> print_vector(points[:4, 1]) 0.0, 0.0, 2.0, 0.0
- set_result_fluxes() None [source]¶
Save the final fluxes of the actual method.
>>> from hydpy import print_vector >>> from hydpy.models.test_stiff0d import * >>> parameterstep() >>> fluxes.q = 1.0 >>> model.numvars.idx_method = 2 >>> results = numpy.asarray(fluxes.fastaccess._q_results) >>> results[:] = 0.0 >>> model.set_result_fluxes() >>> from hydpy import round_ >>> print_vector(results[:4]) 0.0, 0.0, 1.0, 0.0
>>> from hydpy import reverse_model_wildcard_import >>> reverse_model_wildcard_import() >>> from hydpy.models.test_stiff1d import * >>> parameterstep() >>> n(2) >>> fluxes.qv = 1.0, 2.0 >>> model.numvars.idx_method = 2 >>> results = numpy.asarray(fluxes.fastaccess._qv_results) >>> results[:] = 0.0 >>> model.set_result_fluxes() >>> print_vector(results[:4, 0]) 0.0, 0.0, 1.0, 0.0 >>> print_vector(results[:4, 1]) 0.0, 0.0, 2.0, 0.0
- integrate_fluxes() None [source]¶
Perform a dot multiplication between the fluxes and the A coefficients associated with the different stages of the actual method.
>>> from hydpy import print_vector >>> from hydpy.models.test_stiff0d import * >>> parameterstep() >>> model.numvars.idx_method = 2 >>> model.numvars.idx_stage = 1 >>> model.numvars.dt = 0.5 >>> points = numpy.asarray(fluxes.fastaccess._q_points) >>> points[:4] = 15.0, 2.0, -999.0, 0.0 >>> model.integrate_fluxes() >>> from hydpy import round_ >>> from hydpy import pub >>> print_vector(numpy.asarray(model.numconsts.a_coefs)[1, 1, :2]) 0.375, 0.125 >>> fluxes.q q(2.9375)
>>> from hydpy import reverse_model_wildcard_import >>> reverse_model_wildcard_import() >>> from hydpy.models.test_stiff1d import * >>> parameterstep() >>> n(2) >>> model.numvars.idx_method = 2 >>> model.numvars.idx_stage = 1 >>> model.numvars.dt = 0.5 >>> points = numpy.asarray(fluxes.fastaccess._qv_points) >>> points[:4, 0] = 1.0, 1.0, -999.0, 0.0 >>> points[:4, 1] = 15.0, 2.0, -999.0, 0.0 >>> model.integrate_fluxes() >>> print_vector(numpy.asarray(model.numconsts.a_coefs)[1, 1, :2]) 0.375, 0.125 >>> fluxes.qv qv(0.25, 2.9375)
- reset_sum_fluxes() None [source]¶
Set the sum of the fluxes calculated so far to zero.
>>> from hydpy.models.test_stiff0d import * >>> parameterstep() >>> fluxes.fastaccess._q_sum = 5.0 >>> model.reset_sum_fluxes() >>> fluxes.fastaccess._q_sum 0.0
>>> from hydpy import reverse_model_wildcard_import, print_vector >>> reverse_model_wildcard_import() >>> from hydpy.models.test_stiff1d import * >>> parameterstep() >>> n(2) >>> import numpy >>> sums = numpy.asarray(fluxes.fastaccess._qv_sum) >>> sums[:] = 5.0, 5.0 >>> model.reset_sum_fluxes() >>> print_vector(fluxes.fastaccess._qv_sum) 0.0, 0.0
- addup_fluxes() None [source]¶
Add up the sum of the fluxes calculated so far.
>>> from hydpy.models.test_stiff0d import * >>> parameterstep() >>> fluxes.fastaccess._q_sum = 1.0 >>> fluxes.q(2.0) >>> model.addup_fluxes() >>> fluxes.fastaccess._q_sum 3.0
>>> from hydpy import reverse_model_wildcard_import, print_vector >>> reverse_model_wildcard_import() >>> from hydpy.models.test_stiff1d import * >>> parameterstep() >>> n(2) >>> sums = numpy.asarray(fluxes.fastaccess._qv_sum) >>> sums[:] = 1.0, 2.0 >>> fluxes.qv(3.0, 4.0) >>> model.addup_fluxes() >>> print_vector(sums) 4.0, 6.0
- calculate_error() None [source]¶
Estimate the numerical error based on the relevant fluxes calculated by the current and the last method.
“Relevant fluxes” are those contained within the SOLVERSEQUENCES tuple. If this tuple is empty, method
calculate_error()
selects all flux sequences of the respective model with aTrue
NUMERIC attribute.>>> from hydpy import round_ >>> from hydpy.models.test_stiff0d import * >>> parameterstep() >>> results = numpy.asarray(fluxes.fastaccess._q_results) >>> results[:5] = 0.0, 0.0, 3.0, 4.0, 4.0 >>> model.numvars.use_relerror = False >>> model.numvars.idx_method = 3 >>> model.calculate_error() >>> round_(model.numvars.abserror) 1.0 >>> round_(model.numvars.relerror) inf
>>> model.numvars.use_relerror = True >>> model.calculate_error() >>> round_(model.numvars.abserror) 1.0 >>> round_(model.numvars.relerror) 0.25
>>> model.numvars.idx_method = 4 >>> model.calculate_error() >>> round_(model.numvars.abserror) 0.0 >>> round_(model.numvars.relerror) 0.0
>>> model.numvars.idx_method = 1 >>> model.calculate_error() >>> round_(model.numvars.abserror) 0.0 >>> round_(model.numvars.relerror) inf
>>> from hydpy import reverse_model_wildcard_import >>> reverse_model_wildcard_import() >>> from hydpy.models.test_stiff1d import * >>> parameterstep() >>> n(2) >>> model.numvars.use_relerror = True >>> model.numvars.idx_method = 3 >>> results = numpy.asarray(fluxes.fastaccess._qv_results) >>> results[:5, 0] = 0.0, 0.0, -4.0, -2.0, -2.0 >>> results[:5, 1] = 0.0, 0.0, -8.0, -4.0, -4.0 >>> model.calculate_error() >>> round_(model.numvars.abserror) 4.0 >>> round_(model.numvars.relerror) 1.0
>>> model.numvars.idx_method = 4 >>> model.calculate_error() >>> round_(model.numvars.abserror) 0.0 >>> round_(model.numvars.relerror) 0.0
>>> model.numvars.idx_method = 1 >>> model.calculate_error() >>> round_(model.numvars.abserror) 0.0 >>> round_(model.numvars.relerror) inf
- extrapolate_error() None [source]¶
Estimate the numerical error expected when applying all methods available based on the results of the current and the last method.
Note that you cannot apply this extrapolation strategy to the first method. If the current method is the first one, method
extrapolate_error()
returns -999.9:>>> from hydpy.models.test_stiff0d import * >>> parameterstep() >>> model.numvars.use_relerror = False >>> model.numvars.abserror = 0.01 >>> model.numvars.last_abserror = 0.1 >>> model.numvars.idx_method = 10 >>> model.extrapolate_error() >>> from hydpy import round_ >>> round_(model.numvars.extrapolated_abserror) 0.01 >>> model.numvars.extrapolated_relerror inf
>>> model.numvars.use_relerror = True >>> model.numvars.relerror = 0.001 >>> model.numvars.last_relerror = 0.01 >>> model.extrapolate_error() >>> round_(model.numvars.extrapolated_abserror) 0.01 >>> round_(model.numvars.extrapolated_relerror) 0.001
>>> model.numvars.idx_method = 9 >>> model.extrapolate_error() >>> round_(model.numvars.extrapolated_abserror) 0.001 >>> round_(model.numvars.extrapolated_relerror) 0.0001
>>> model.numvars.relerror = inf >>> model.extrapolate_error() >>> round_(model.numvars.extrapolated_relerror) inf
>>> model.numvars.abserror = 0.0 >>> model.extrapolate_error() >>> round_(model.numvars.extrapolated_abserror) 0.0 >>> round_(model.numvars.extrapolated_relerror) 0.0
- class hydpy.core.modeltools.SubmodelInterface[source]¶
-
Base class for defining interfaces for submodels.
- typeid: ClassVar[int]¶
Type identifier that we use for differentiating submodels that target the same process group (e.g. infiltration) but follow different interfaces.
For Submodel_V1,
typeid
is 1, for Submodel_V2 2, and so on.We prefer using
typeid
over the standardisinstance()
checks in model equations as it allows releasing Python’s Globel Interpreter Lock in Cython.
Share class-level configurations between a main model and a submodel temporarily.
The default implementation of method
share_configuration()
does nothing. Submodels can overwrite it to adjust their classes to the current main model during initialisation.
- add_mainmodel_as_subsubmodel(mainmodel: Model) bool [source]¶
If appropriate, add the given main model as a sub-submodel of the current submodel.
The default implementation of method
add_mainmodel_as_subsubmodel()
just returnsFalse
. Submodels can overwrite it to enable them to query data from their main models actively. If a submodel accepts a main model as a sub-submodel, it must returnTrue
; otherwise,False
.
- class hydpy.core.modeltools.SharableSubmodelInterface[source]¶
Bases:
SubmodelInterface
,ABC
Base class for defining interfaces for submodels designed as “sharable”.
Currently,
SharableSubmodelInterface
implements no functionality. Its sole purpose is to allow model developers to mark a submodel as sharable, meaning multiple main model instances can share the same submodel instance. It is more of a safety mechanism to prevent reusing submodels that are not designed for this purpose.- typeid: ClassVar[int]¶
Type identifier that we use for differentiating submodels that target the same process group (e.g. infiltration) but follow different interfaces.
For Submodel_V1,
typeid
is 1, for Submodel_V2 2, and so on.We prefer using
typeid
over the standardisinstance()
checks in model equations as it allows releasing Python’s Globel Interpreter Lock in Cython.
- cymodel: CyModelProtocol | None¶
- parameters: parametertools.Parameters¶
- sequences: sequencetools.Sequences¶
- masks: masktools.Masks¶
- REUSABLE_METHODS: ClassVar[tuple[type[ReusableMethod], ...]]¶
- class hydpy.core.modeltools.Submodel(model: Model)[source]¶
Bases:
object
Base class for implementing “submodels” that serve to deal with (possibly complicated) general mathematical algorithms (e.g. root-finding algorithms) within hydrological model methods.
You might find class
Submodel
useful when trying to implement algorithms requiring some interaction with the respective model without any Python overhead. See the modulesroottools
and rootutils as an example, implementing Python interfaces and Cython implementations of a root-finding algorithms, respectively.
- class hydpy.core.modeltools.CoupleModels(*args, **kwargs)[source]¶
Bases:
Protocol
[TypeModel_co
]Specification for defining custom “couple_models” functions to be wrapped by function
define_modelcoupler()
.
- hydpy.core.modeltools.define_modelcoupler(inputtypes: tuple[type[TypeModel_contra], ...], outputtype: type[TypeModel_co]) Callable[[CoupleModels[TypeModel_co]], ModelCoupler[TypeModel_co, TypeModel_contra]] [source]¶
Wrap a model-specific function for creating a composite model based given on
Node
andElement
objects and their handled “normal”Model
instances.
- class hydpy.core.modeltools.ModelCoupler(inputtypes: tuple[type[TypeModel_contra], ...], outputtype: type[TypeModel_co], wrapped: CoupleModels[TypeModel_co])[source]¶
Bases:
Generic
[TypeModel_co
,TypeModel_contra
]Wrapper that extends the functionality of model-specific functions for coupling “normal” models to composite models.
One benefit of using
ModelCoupler
over raw “couple_models” is that it alternatively acceptsSelection
objects instead ofNodes
andElements
objects:>>> from hydpy import Element, Elements, Node, Nodes, prepare_model, Selection >>> n12 = Node("n12", variable="LongQ") >>> e1 = Element("e1", outlets=n12) >>> channel1 = prepare_model("sw1d_channel") >>> channel1.parameters.control.nmbsegments(1) >>> with channel1.add_storagemodel_v1("sw1d_storage", position=0, update=False): ... pass >>> with channel1.add_routingmodel_v2("sw1d_lias", position=1, update=False): ... pass >>> e1.model = channel1 >>> e2 = Element("e2", inlets=n12) >>> channel2 = prepare_model("sw1d_channel") >>> channel2.parameters.control.nmbsegments(1) >>> with channel2.add_storagemodel_v1("sw1d_storage", position=0, update=False): ... pass >>> e2.model = channel2
>>> network1 = e1.model.couple_models(nodes=Nodes(n12), elements=Elements(e1, e2)) >>> assert network1.storagemodels[0] is channel1.storagemodels[0] >>> assert network1.storagemodels[1] is channel2.storagemodels[0] >>> assert network1.routingmodels[0] is channel1.routingmodels[1] >>> assert network1.storagemodels[0].routingmodelsdownstream.number == 1 >>> assert network1.storagemodels[1].routingmodelsupstream.number == 1
>>> selection = Selection("test", nodes=n12, elements=[e1, e2]) >>> network2 = e1.model.couple_models(selection=selection) >>> assert network2.storagemodels[0] is channel1.storagemodels[0] >>> assert network2.storagemodels[1] is channel2.storagemodels[0] >>> assert network2.routingmodels[0] is channel1.routingmodels[1] >>> assert network2.storagemodels[0].routingmodelsdownstream.number == 1 >>> assert network2.storagemodels[1].routingmodelsupstream.number == 1
It additionally checks if the wrapped “couple_models” function supports the types of all passed model instances:
>>> e3 = Element("e3", inlets="n3_in", outlets="n3_out") >>> e3.model = prepare_model("musk_classic") >>> e1.model.couple_models(nodes=Nodes(n12), elements=Elements(e1, e2, e3)) Traceback (most recent call last): ... TypeError: While trying to couple the given model instances to a composite model of type `sw1d_network` based on function `combine_channels`, the following error occurred: `musk_classic` of element `e3` is not among the supported model types: sw1d_channel.